
27. 03. 2020

1

Logična simulacija in simulacija napak
Logic and fault simulation

Univerza v Ljubljani
Fakulteta za elektrotehniko

Preizkušanje elektronskih vezij

Laboratorij za načrtovanje integriranih vezij

Overview

 Introduction
 Simulation Models
 Logic Simulation
 Fault Simulation
 Concluding remarks

27. 03. 2020

2

Introduction

 Set of techniques used in digital circuit verification, test
development, design debug and diagnosis.

 Simulation is the process of predicting the behaviour of
the circuit design before the circuit is fabricated.

 In digital circuits, simulation has two purposes:
 To verify whether the design meets its functional specification

and contains any design errors. This process is referred to as
logic simulation or fault-free simulation. This process is called
also verification.

 In test development proces, fault simulation is used to
simulate the faulty circuit.

 Faulty circuit is simulated with a set of test patterns that help to
locate/diagnose any manufacturing defects.

 Fault simulation is also important component of ATPG
programs.

Logic Simulation for Design Verification

 To manage growing design complexity, logic
simulation is performed at each design stage.

 Behavioral or electronic system level (ESL, C/C++, SystemC)
 Register-transfer level (RTL, HDL code)

 Gate-level (Gate-level netlist)
 Transistor-level (SPICE models for switch- and transistor-

level design)

27. 03. 2020

3

Logic Simulation for Design Verification

Fault Simulation for Test and Diagnosis

Once again to remember:
 Logic simulation is intended for identifying design

errors (by designers or CAD tools) to be caught prior
physical implementation.

 Fault simulation is concerned with the behaviour of
fabricated circuit as a consequence of fabrication
imperfection.

 Manufacturing defects may cause the circuits to
behave differently from the expected behaviour.

 Fault simulation assumes that the design is
functionally correct.

27. 03. 2020

4

Fault Simulation for Test and Diagnosis

 Fault simulation rates the effectiveness of a set of test
patterns in detecting manufacturing defects.

 The quality of a test set is expressed in terms of fault
coverage (FC): the percentage of detected modeled
faults that causes the design to exhibit observable
erroneous responses.

 Fault simulation is one of the crucial components in
ATPG:
 The designer employs a fault simulator to evaluate the FC

on a set of test patterns.
 Fault simulation allows to compress the test set (test

compaction).
 Fault simulation assists in fault diagnosis.

Simulation Models

 Gate-level circuit simulation models for
combinational and sequential circuits.

 Gate-level circuit description contains sufficient
circuit structure information to capture the effects of
many realistic manufacturing defects.

 The abstraction level of gate-level models is high
enough to permit development of efficient simulation
techniques.

27. 03. 2020

5

Gate-Level Network

 Gate-level network is described as the interconnections
of logic gates which are circuit elements that realize
Boolean operations or expressions.

 The available gates range from the standard gates
(AND, OR, NOT, NAND, NOR) to complex gates such as
XOR and XNOR.

Gate-Level Network

 Example circuit is composed of OR (G1), AND (G2),
NOT (G3) and NOR (G4) gates.

27. 03. 2020

6

Sequential Circuit

 Most of logic designs are sequential circuits.

 Their outputs depend on both the current and past
input values.

 Sequential circuits are divided into 2 categories:
synchronous and asynchronous.

 The synchronous sequential circuit is composed of
two parts: combinational logic and flip-flops (FF)
synchronized by a common clock signal.

Huffman model of sequential circuit

27. 03. 2020

7

Huffman model of sequential circuit

 The inputs to the combinational logic consist of the
primary inputs (PIs) x1, x2, … xn and the FF outputs y1,
y2, … yl called pseudo primary inputs (PPIs).

 The outputs are comprised of the primary outputs
(POs) z1, z2, …. zm and FF inputs Y1, Y2, … Yl called
pseudo primary outputs (PPOs) of the combinational
logic.

 We assume that all FF are edge triggered – the states
of all the FFs are updated according to the PPO values
and FF characteristic function.

Description of a FF

 FF can be modeled as a functional block or as the
interconnections of logic gates.

 Example of positive-edge triggered D FF.

27. 03. 2020

8

Logic Symbols

 The basis for most digital systems is the two-valued
Boolean algebra.

 A variable can assume only 2 values: true/false,
represented by the two sysmbols: 1/0.

 Physical representation depends of the logic family or
technology used.

 In addition to 1/0, logic simulators often include u
(unknown, uncertain certain behavior) and Z (high-
impedance, tri-state logic) symbols.

 Also, additional symbols may be used (based on value
and strength).

Unknown State u

 By associating u with signals, we mean that the signal
is either {1} or {0}, but we are not sure which one is
the actual value; u = {0,1}

 Logic with (1,0,u) is called ternary logic.
 Example of Boolean operation with symbols (0,1,u)

27. 03. 2020

9

Basic Boolean Operations for Ternary Logic

 Input/output relationship for the three basic Boolean
operations using ternary logic:

0 is controlling value for AND gate
1 is controlling value for OR gate

Simulation with Ternary Logic

 Simulation based on ternary logic may not be
accurate (information loss)

 Example:

27. 03. 2020

10

Resolving Information Loss with Ternary Logic

 To resolve the problem of information loss, we have
to introduce ui‘

 Rules associated with each ui

 Check again the previous example.
 Output of G3 will be u‘ and K = 0.
 Each FF should have unique unknown symbol ui

High-impedance State Z

 Tristate gates permit several gates to time-share a
common wire (bus).

 A signal is in the Z state if it is connected neither to
Vdd nor ground.

 Example: three bus drivers (G1, G2, G3) drive the bus wire y

27. 03. 2020

11

Logic Element Evaluation

 Logic element (or gate) evaluation is the process of
computing the output of a logic element based on its
current input and state values.

 The choice of evaluation technique depends on the
types and models of the logic elements.

 Most used methods are:
 Truth tables
 Input scanning
 Input counting
 Parallel gate evaluation

Truth Tables

 This is the most straightforward way to evaluate logic
elements.

 n-input combinational logic element requires 2n-entry
truth table to store the output value with respect to
all possible input combinations.

 In practice, the truth table is stored in the array of
size 2n

 Truth-table based logic element evaluation is fast, but
their usage is limited because the required memory
grows exponentially with respect to n

 But, for example, for 9-valued logic system, 4 bits are
required to code 9 symbols:
 For 5-input element, an array size of 24x5 = 220 is required to

store 95=19.683 truth table entries.

27. 03. 2020

12

Input Scanning

 Outputs of (N)AND and N(OR) gates can be
determined if any of their inputs has a controlling
value c.

 Simulators scans through the input and checks for the
controlling value, c.

 In addition to c, inversion value, i, is required.

Input Scanning

 The input scanning algorith flow:

27. 03. 2020

13

Input Counting

 Input counting algorithm mantains for each gate the
number of controlling and unknown inputs.

 During logic simulation, two counts (the number of
controlling and the number of unknown inputs) are
updated if the value of any gate input changes.

 The same rules as those for input scanning are
applied to determine the output value.

Parallel Gate Evaluation

 The goal is to speed-up logic simulation.
 Modern computers process data in the unit of a

word, typically 32- or 64-bits wide -> mutiple copies
of the signal can be stored in a single word and
processed in the same time.

 This is referred as parallel simulation or bitwise
parallel simulation.

27. 03. 2020

14

Parallel Gate Evaluation

 Parallel simulation is more complicated for multi-
valued logic -> for ternary logic, two bits are needed
to code three simbols.

 For example:

 For each signal, two bits are located.
 Evaluation for 2-input AND gate is:

Timing Models

 Delay is associated to all electrical components,
including logic gates and interconnection wires.

 We will analyze:
 Transport Delay
 Inertial Delay
 Wire Delay
 Functional Element Delay Model

27. 03. 2020

15

Transport Delay

 Transport delay refers to the time duration it takes for
the effect of gate input changes to appear at gate
outputs.

 Nominal delay model specfies the same delay for the
output rising and falling transition (also called
transition-independent delay model).

Transport Delay

 For cases, where rising and falling times are different,
rise/fall delay model is used.

27. 03. 2020

16

Transport Delay

 If the gate transport delay cannot be uniquely
determined (due to process variations), min-max
delay is used.

 We can combine min-max and rise/fall delay models
to represent more complicated delay behaviours.

Inertial Delay

 Inertial delay is defined as the minimum input pulse
duration necessary for the output to switch states.

 Pulses, shorter than the inertial delay, cannot pass
through the circuit element.

 Example:

27. 03. 2020

17

Wire Delay

 Wires are 3-D structures that are inherently resistive
and capacitive.

 It takes finite time, called propagation delay, for a
signal to travel from point p to point q.

Wire Delay

 In general, wire delay are specified for each
connected gate output and gate input pair since
physical distances (-> propagation delays) between
the driver and receiver gates vary.

 To model the wire delays, delay elements dd-r are
inserted into the fanout branches.

27. 03. 2020

18

Functional Element Delay Model

 Functional elements, such as FF, have more
complicated behaviour than simple logic gates and
require more sophisticated timing models.

 D FF I/O Delay Model:

FF Timing model contains also setup/hold times

Logic Simulation

 Gate-level logic simulation methodologies:

 Compiled-code simulation
 Event-driven simulation
 Hardware emulation and acceleration approaches

27. 03. 2020

19

Compiled-Code Simulation

 Idea: to translate the logic network into a series of
machine instructions that model the functions of the
individual gates and interconnections between them.

Simulation flow:

Code generation

Code generation flow:

27. 03. 2020

20

Logic Optimization

 The purpose of logic optimization is to enhance the
simulation efficiency (program size and execution time).

 Typical optimization steps:

Logic Levelization

 Logic gates must be evaluated in an order such that a gate
will not be evaluated until all its driving gates have been
evaluated.

 For most networks, more than one evaluation order
exists:

or

27. 03. 2020

21

Logic Levelization

 Logic levelization algorithm:

Logic Levelization

 Example:

27. 03. 2020

22

Code Generation

 Different code generation techniques are used:

 High-level programming language source code
Network is described in C/C++, SystemC, ..)

 Native machine code
Target machine code is generated directly without the
need for compilation (high simulation efficiency)

 Interpreted code
Target machine is a software emulator – during simulation,
instructions are interpreted and executed one at a time.

Code Generation

 Pseudo code for the example circuit.
 Each statement is replaced with the corresponding

language constructs or machine instruction.

27. 03. 2020

23

Code Generation

 Most effective if binary logic is used -> machine
instructions are readily available for Boolean
operations (AND, OR, NOT).

 The main limitation is timing modeling - gate and wire
delays cannot be handled -> it fails to detect timing
problems such as glitches and race conditions.

 The low efficiency of compiled-code simulation is
because the entire network is evaluated for each
input vector.
 In general up to 10 % of input values change values

between consecutive vectors.

Event-Driven Simulation

 High simulation efficiency by performing gate
evaluations only when necessary.

 In event-driven simulation, the switching of a signal
value is called the event. Event-driven simulators
monitors the occurances of events to determine
which gates to evaluate.

 Example:

27. 03. 2020

24

Event-Driven Simulation: Algorithm

Nominal Delay Event-Driven Simulation

 It is imporant also when to evaluate logic gate.
 The scheduler is implemented as priority que.
 The vertical list is an ordered list that stores the time

stamps when events occur.
 Attached to each stamp is a horizontal list of events

that occur at time ti

27. 03. 2020

25

Compiled Code vs. Event-Driven Simulation

 Compiled code is suitabe for cycle-based simulation
(circuit behaviour at the end of each clock cycle is
important) and zero-delay simulation can be used.

 Suitable for bitwise parallel simulation.

 Event-driven supports general delays and can detect
hazards.

 Ideal for circuits with low activity.
 Also very useful for circuit debugging.

Hazards

 Different delays along reconvergent signal paths.
 Transient pulses or glitches, called hazards may occur.
 Example:

 Input vector ABC = 110 -> 100
 Static hazard 0-hazard at node K.

27. 03. 2020

26

Types of Hazards

 Hazards are: static and dynamic.
 Static hazards are static 1-hazard and static 0-hazard.

 Dynamic hazards are dynamic 1-hazard and dynamic
0-hazard.

Fault simulation

 More challenging as logic simulation.
 The behaviour of the circuit containing all the

modeled faults must be simulated.
 The complexity of the fault simulation is O(pn2)

 p = number of test patterns, n = number of logic gates

 This is infeasible and various fault simulation
techniques have been developed.

Terminology:
 Test vectors: term used for logic simulation (human written)
 Test patterns: term used for fault simulation (machine

generated)

27. 03. 2020

27

Serial Fault simulation

 The simplest fault simulation technique.
 It consists of

 fault-free and
 faulty circuit simulations.

 The fault-free responses are stored to determine later
whether a test pattern can detect a fault or not.

 Serial fault simulation simulates faults one at a time.
 Presence of the fault is done with a fault injection.
 The faulty circuit is then simulated with a given test

pattern to derive the faulty response.
 The process repeats until all faults in the fault list are

simulated (fault dropping).

Serial Fault simulation: Example

27. 03. 2020

28

Serial Fault simulation: Algorithm

Parallel Fault Simulation

 Similar to parallel logic simulation, fault simulation
takes advantage of bitwise parallelism.

 Two parallelism are possible
 parallelism in faults (parallel fault simulation)
 parallelism in patterns (parallel pattern fault simulation)

 In w-bit wide data words, w-1 bits are used for faulty
circuits, 1 bit is used for fault-free circuit.

 w-1 faulty circuits can be processed in parallel,
resulting in a speedup factor of w-1 compared to
serial fault simulation.

27. 03. 2020

29

Parallel Fault Simulation: Example

Parallel Fault Simulation: Injecting a Fault

 Parallel fault simulation (FS) is applicable to unit or
zero delay models only.

 Parallel FS is best used for simulating at the beginning
of test generation, when a large number of faults are
detected by each pattern.

27. 03. 2020

30

Parallel-Pattern Fault Simulation

 First, logic simulations on the fault-free circuit are
performed.

 Then faults are simulated on these w test patterns
 For each fault, simulation results are compared with

the correct responses to determine if the fault is
detected.

 The process repeats until all faults in the fault list are
simulated.

Parallel-Pattern Fault Simulation: Example

27. 03. 2020

31

Parallel-Pattern Fault Simulation: Algorithm

Deductive Path Simulation

 It is based on logic reasoning.
 For a given test pattern t, deductive simulation

identifies the faults that can be detected.
 It is very fast since only fault-free simulation are

performed.
 Fault list (Lx) is associated with a signal line x.
 Lx is a set of faults that causes x to differ from its

fault-free value.

27. 03. 2020

32

Deductive Fault Simulation

 Example, test pattern P1 ABC = 010
LA = (A/1), LB = (B/0), LC = (C/1).

 Based on logic reasoning, fault list at gate output is
created.

 This process is called fault list propagation.

Deductive Fault Simulation

 Example for the next test pattern P2 ABC = 001
 Faults, detected by test pattern P1, are dropped and

not taken into account.

27. 03. 2020

33

Deductive Fault Simulation

 Algorithm

Critical Path Tracing

 Alternative to fault simulation
 Given a test pattern t, net x has a critical value v if

and only if (iff) the x stuck-at v‘ is detected by t.
 A net that has a critical value is a critical net.
 Critical path is a path that consists of nets with

critical values.
 Tracing the critical path from PI to PO gives a list of

critical nets and hence a list of detected faults.

27. 03. 2020

34

Critical Path Tracing

 Example: Consider the test pattern ABC = 010
 All critical values at nets K, H, J, F, E, B, A are circled.
 Flipping any of them would change the PO K.
 Net L is not critical since changing L would not change

PO.
 Seven critical nets are identified and their associated

faults A/1, B/0, E/0, F/0, H/1, J/1, K/0 are detected

Critical Path Tracing

 Special attention is required when fanout branches
reconverge.

 Net E is not critical since changing its value will
propagate through gates G2 and G3, but this change
will not be further propagated through gate G4.

27. 03. 2020

35

Other methods for fault simulation

 Concurrent fault simulation
 Differential fault simulation
 Fault sampling
 Statistical fault analysis
 And several others ...

Conclusion

 Logic simulation
 Checks whether the design will behave as predicted before

its physical implementation.
 Event-driven simulation technique is most widely used

today.
 Fault simulation

 We have information in advance how effective is the given
test pattern set in detecting faults.

 Logic and fault simulation programs are part of every
commercial tool for circuit design !!

