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In Praise of VLSI Test Principles and Architectures: Design for Testability

Testing techniques for VLSI circuits are today facing many exciting and complex challenges.
In the era of large systems embedded in a single system-on-chip (SOC) and fabricated in
continuously shrinking technologies, it is important to ensure correct behavior of the whole
system. Electronic design and test engineers of today have to deal with these complex and
heterogeneous systems (digital, mixed-signal, memory), but few have the possibility to study
the whole field in a detailed and deep way. This book provides an extremely broad knowledge
of the discipline, covering the fundamentals in detail, as well as the most recent and advanced
concepts.

It is a textbook for teaching the basics of fault simulation, ATPG, memory testing, DFT and
BIST. However, it is also a complete testability guide for an engineer who wants to learn the
latest advances in DFT for soft error protection, logic built-in self-test (BIST) for at-speed
testing, DRAM BIST, test compression, MEMS testing, FPGA testing, RF testing, etc.

Michel Renovell, Laboratoire d'Informatique, de Robotique et de Microélectronique de
Montpellier (LIRMM), Montpellier, France

This book combines in a unique way insight into industry practices commonly found in
commercial DFT tools but not discussed in textbooks, and a sound treatment of the technical
fundamentals. The comprehensive review of future test technology trends, including self-
repair, soft error protection, MEMS testing, and RF testing, leads students and researchers
to advanced DFT research.

Hans-Joachim Wunderlich, University of Stuttgart, Germany

Recent advances in semiconductor manufacturing have made design for testability (DFT)
an essential part of nanometer designs. The lack of an up-to-date DFT textbook that covers
the most recent DFT techniques, such as at-speed scan testing, logic built-in self-test (BIST),
test compression, memory built-in self-repair (BISR), and future test technology trends, has
created problems for students, instructors, researchers, and practitioners who need to master
modern DFT technologies. I am pleased to find a DFT textbook of this comprehensiveness
that can serve both academic and professional needs.

Andre Ivanov, University of British Columbia, Canada

This is the most recent book covering all aspects of digital systems testing. It is a “must read”
for anyone focused on learning modern test issues, test research, and test practices.

Kewal K. Saluja, University of Wisconsin-Madison

Design for testability (DFT) can no longer be considered as a graduate-level course. With
growing design starts worldwide, DFT must be also part of the undergraduate curricu-
lum. The book’s focus on VLSI test principles and DFT architectures, while deemphasizing
test algorithms, is an ideal choice for undergraduate education. In addition, system-on-
chip (SOC) testing is one among the most important technologies for the development of
ultra-large-scale integration (ULSI) devices in the 21st century. By covering the basic DFT
theory and methodology on digital, memory, as well as analog and mixed-signal (AMS) test-
ing, this book further stands out as one best reference book that equips practitioners with
testable SOC design skills.

Yihe Sun, Tsinghua University, Beijing, China



This Pageis Intentionally Left Blank



VLSI TEST PRINCIPLES AND
ARCHITECTURES



The Morgan Kaufmann Series in Systems on Silicon
Series Editor: Wayne Wolf, Princeton University

The rapid growth of silicon technology and the demands of applications are increasingly forcing
electronics designers to take a systems-oriented approach to design. This has led to new challenges
in design methodology, design automation, manufacture and test. The main challenges are to
enhance designer productivity and to achieve correctness on the first pass. The Morgan Kaufmann
Series in Systems on Silicon presents high-quality, peer-reviewed books authored by leading experts
in the field who are uniquely qualified to address these issues.

The Designer’s Guide to VHDL, Second Edition
Peter J. Ashenden

The System Designer’s Guide to VHDL-AMS
Peter J. Ashenden, Gregory D. Peterson, and Darrell A. Teegarden

Readings in Hardware/Software Co-Design
Edited by Giovanni De Micheli, Rolf Ernst, and Wayne Wolf

Modeling Embedded Systems and SoCs
Axel Jantsch

ASIC and FPGA Verification: A Guide to Component Modeling
Richard Munden

Multiprocessor Systems-on-Chips
Edited by Ahmed Amine Jerraya and Wayne Wolf

Comprehensive Functional Verification
Bruce Wile, John Goss, and Wolfgang Roesner

Customizable Embedded Processors: Design Technologies and Applications
Edited by Paolo Ienne and Rainer Leupers

Networks on Chips: Technology and Tools
Giovanni De Micheli and Luca Benini

Designing SOCs with Configured Cores: Unleashing the Tensilica Diamond Cores
Steve Leibson

VLSI Test Principles and Architectures: Design for Testability
Edited by Laung-Terng Wang, Cheng-Wen Wu, and Xiaoging Wen

Contact Information

Charles B. Glaser

Senior Acquisitions Editor

Elsevier

(Morgan Kaufmann; Academic Press; Newnes)
(781) 313-4732

c.glaser@elsevier.com
http://www.books.elsevier.com

Wayne Wolf

Professor

Electrical Engineering, Princeton University
(609) 258-1424

wolf@princeton.edu
http://www.ee.princeton.edu/~wolf/



VLSI TEST PRINCIPLES
AND ARCHITECTURES
DESIGN FOR TESTABILITY

Edited by

Laung-Terng Wang
Cheng-Wen Wu
Xiaoging Wen

AMSTERDAM « BOSTON ¢« HEIDELBERG ¢ LONDON
NEW YORK « OXFORD e« PARIS « SAN DIEGO
SAN FRANCISCO ¢ SINGAPORE ¢ SYDNEY ¢« TOKYO rd
M [«

ELSEVIER Morgan Kaufmann Publishers is an imprint of Elsevier  MORGAN KAUFMANN PUBLISHERS



Acquisitions Editor
Publishing Services Manager
Production Editor
Assistant Editor
Production Assistant
Cover Design

Cover Illustration
Composition
Technical Tllustration
Copyeditor
Proofreader

Indexer

Interior printer
Cover printer

Charles B. Glaser

George Morrison

Dawnmarie Simpson

Michele Cronin

Melinda Ritchie

Paul Hodgson

©Dennis Harms/Getty Images

Integra Software Services

Integra Software Services

Sarah Fortener

Phyllis Coyne et al. Proofreading Services
Broccoli Information Management

The Maple-Vail Book Manufacturing Group
Phoenix Color Corporation

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.
© 2006 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks

or registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim,
the product names appear in initial capital or all capital letters. Readers, however, should contact
the appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior
written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com.

You may also complete your request online via the Elsevier homepage (http:/elsevier.com), by selecting
“Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
VLSI test principles and architectures: design for testability/edited by

Laung-Terng Wang, Cheng-Wen Wu, Xiaoging Wen.

p. cm.

Includes bibliographical references and index.

ISBN-13: 978-0-12-370597-6 (hardcover: alk. paper)

ISBN-10: 0-12-370597-5 (hardcover: alk. paper)

1. Integrated circuits—Very large scale integration—Testing. 2. Integrated circuits—Very large
scale integration—Design.
I. Wang, Laung-Terng. II. Wu, Cheng-Wen, EE Ph.D. III. Wen, Xiaoging.
TK7874.75.V587 2006
621.39'5—dc22

2006006869

ISBN 13: 978-0-12-370597-6
ISBN 10: 0-12-370597-5

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America
06 07 08 09 10 54 3 2 1

Working together to grow
libraries in developing countries
www.elsevier.com | www.bookaid.org | www.sabre.org

BOOK AID

International

ELSEVIER

Sabre Foundation



CONTENTS

Preface xxi

In the Classroom XXiv

Acknowledgments XXV

Contributors xxvii

About the Editors XXix

1 Introduction 1
Yinghua Min and Charles Stroud

1.1  Importance of Testing . . .. .. ... ... .. ... ... ....... 1

1.2 Testing During the VLSI Lifecycle . . ... ... ............ 2

1.2.1  VLSI Development Process . . . . . ... ... ......... 3

1.2.1.1  Design Verification . ... ... ........... 4

1.2.1.2  Yield and RejectRate . . . . ... ... ....... 5

1.2.2  Electronic System Manufacturing Process . . . . .. ... .. 6

1.2.3  System-Level Operation . . ... ... ............. 6

1.3 Challenges in VLSI Testing . . . . . . .. ... ... ... .... 8

1.3.1 Test Generation . . . ... ... ... ... ..., 9

1.32 FaultModels . . .. ... ... ... ... . ........... 11

1.3.2.1  Stuck-AtFaults . ................... 12

1.3.2.2 TransistorFaults . ... ... ............ 15

1.3.2.3 Openand ShortFaults . ... ............ 16

1.3.2.4  Delay Faults and Crosstalk . . . . ... ....... 19

1.3.2.5  Pattern Sensitivity and Coupling Faults . . . . . . 20

1.3.2.6  Analog Fault Models . . ... ............ 21

1.4  Levels of Abstraction in VLSI Testing . . . . ... ... ........ 22

1.4.1  Register-Transfer Level and Behavioral Level . . . . . .. .. 22

1.42 GateLevel ...... ... ... ... ... .. ... ..., 23

1.43 SwitchLevel . ... ... ... ... ... . ........... 24

1.44 PhysicalLevel ... ... ... ... .. ............. 24



viii

Contents
1.5  Historical Review of VLSI Test Technology . . . . ... ... ... .. 25
1.5.1  Automatic Test Equipment. . . . ... ... ... ....... 25
1.5.2  Automatic Test Pattern Generation . . . . . . ... ... ... 27
1.5.3  FaultSimulation. . . ... ... ... .............. 28
1.5.4 Digital Circuit Testing . . . . ... ... ... ......... 28
1.5.5 Analog and Mixed-Signal Circuit Testing . . ....... .. 29
1.5.6  Design for Testability . . . . ... ... ............. 29
1.5.7 Board Testing . . ... ... .. ... ... 31
1.5.8 Boundary Scan Testing . . . . ... ... ... ......... 32
1.6 Concluding Remarks . . . ... ... ... ... ... .. ........ 33
1.7 EXErcises . . . . . . . . o i e 33
Acknowledgments . . . . . . . ... 34
References . . . . . . . . . . . e 34
Design for Testability 37
Laung-Terng (L.-T.) Wang, Xiaoqing Wen, and Khader S. Abdel-Hafez
2.1 Introduction . .. ... ... ... .. ... 37
2.2 Testability Analysis . . ... ... ... ... ... ... ... ..., 40
2.2.1  SCOAP Testability Analysis . . . ... ............. 41
2.2.1.1  Combinational Controllability and
Observability Calculation . . . .. ... ....... 41
2.2.1.2  Sequential Controllability and
Observability Calculation. . . ... ... ... ... 43
2.2.2  Probability-Based Testability Analysis . . .. ... ...... 45
2.2.3  Simulation-Based Testability Analysis . . .. ... ...... 47
2.2.4 RTL Testability Analysis . . ... ................ 48
2.3  Design for TestabilityBasics . . . . . .. ... ... ........... 50
2.3.1 AdHoc Approach . ... ... ..... ... .......... 51
23.1.1 TestPointInsertion . . . ... ... ......... 51
2.3.2  Structured Approach . . .. ... ... ... . 0L 53
24 ScanCell Designs . . . .. ... ... ... ..., 55
241 Muxed-DScanCell . ........... ... ... ........ 55
242 Clocked-ScanCell . ... ... .. ... ... .......... 56
243 LSSDScanCell . ......... ... . ... ....... 57
2.5 Scan Architectures . . ... ... ... ... ... ... 59
2.5.1 Full-ScanDesign. . ... ... .................. 59
2.5.1.1  Muxed-D Full-Scan Design . . . . .......... 59
2.5.1.2  Clocked Full-Scan Design . . ... ......... 62
2.5.1.3 LSSD Full-Scan Design . . . . ... ......... 62
2.5.2 Partial-Scan Design . . . . ... ... ... ... ........ 64
2.5.3 Random-Access Scan Design . . . ... ... ......... 67
2.6 ScanDesignRules. . . .. ... ... ... .. ... ... . . . . ... 70
2.6.1 Tristate Buses . . ... ... ... .. . ... ... ... 71

2.6.2 Bidirectional /O Ports . . ... ... ... .. .. ....... 71



Contents ix

263 GatedClocks . .. ... ... ... ... . . ... ... ..., 71

264 DerivedClocks . . . ... ... ... ... . ... ... ..., 74

2.6.5 Combinational Feedback Loops . . . . . ... ... ...... 74

2.6.6  Asynchronous Set/Reset Signals . . . . . ... ......... 75

2.7 ScanDesignFlow . . ... ... ... ... . . .. ... ... .. ... 76
2.7.1  Scan Design Rule Checking and Repair . .. ......... 77

272 ScanSynthesis . . . ... ... ... ... .. ..o 78
2.7.2.1  Scan Configuration . . ................ 79

2.72.2 ScanReplacement. . .. ... ... ......... 82

2.72.3 ScanReordering . . ... ............... 82

2.7.2.4 Scan Stitching . . ... ................ 83

2.7.3 Scan Extraction . .. ... ... ... ... 0. 83

2.74  Scan Verification . ... ..................... 84
2.7.4.1  Verifying the Scan Shift Operation . . . ... ... 85

2.7.4.2  Verifying the Scan Capture Operation . . ... . . 86

275 ScanDesign Costs . . . . . .. ... ... 86

2.8  Special-Purpose Scan Designs . . . . . . . .. ... ... 87
2.8.1 EnhancedScan . .............. ... .. ...... 87

282 SnapshotScan . .......... ... .. ..... . ..... 88

2.8.3 Error-ResilientScan . ... ................... 90

2.9  RTL Design for Testability . . . . ... ... ... ............ 92
2.9.1 RTL Scan Design Rule Checking and Repair . ... .. ... 93

29.2 RTLScanSynthesis . . . ... ... ... ............ 94

2.9.3  RTL Scan Extraction and Scan Verification . . . . . .. ... 95

2.10 Concluding Remarks . ... ... ... ... ... ............ 95
211 EXErCiSes . . . . . v v v it i i e e e e e e 96
Acknowledgments . . . . . . . ... 99
References . . . . . . . . . . . . e 99
Logic and Fault Simulation 105

Jiun-Lang Huang, James C.-M. Li, and Duncan M. (Hank) Walker

3.1 Introduction . .. . .... ... .. ... 106
3.1.1  Logic Simulation for Design Verification ... ........ 106

3.1.2  Fault Simulation for Test and Diagnosis . . . . . ... .. .. 107

3.2 Simulation Models . .. ... ... ... ... ... .. . . ... ... 108
32.1 Gate-Level Network . . ... .. ... ... .......... 109
3.2.1.1  Sequential Circuits . . ................ 109

322 LogicSymbols . . . ... ... ... .. ... .. .. ... ... 110
3221 Unknown Stateuzt . .................. 111

3.2.2.2 High-Impedance State Z . . . . ... ........ 113

3.2.2.3 Intermediate Logic States . . . . ... ....... 114

3.2.3 Logic Element Evaluation . .. ................. 114
3231 TruthTables ... ................... 115

3.23.2 InputScanning .. .................. 115



Contents

3233 ImputCounting. . ... ... .. ... ... .... 116

3.2.3.4  Parallel Gate Evaluation . .............. 116

324 TimingModels . . . ... ... ... ... ... . ... .. 118
3241 TransportDelay . ... ................ 118

3242 ImertialDelay. . ... ... ... ........... 119

3243 WireDelay . ... ................... 119

3.2.4.4  Functional Element Delay Model . . . .. ... .. 120

3.3 Logic Simulation . ... ... ... ... .. ... . . . . . ... 121
3.3.1 Compiled-Code Simulation . ... ............... 121
3.3.1.1 Logic Optimization . ... ... ........... 121

3.3.1.2 Logic Levelization . . . .. ... ........... 123

33.1.3 CodeGeneration. . . .. ... ... ......... 124

3.3.2 Event-Driven Simulation . . . .. ... ... .......... 125
3.3.2.1 Nominal-Delay Event-Driven Simulation . . . . . 126

3.3.3  Compiled-Code Versus Event-Driven Simulation . . ... .. 129

334 Hazards . . . . . . . . .. 130
3.3.4.1  Static Hazard Detection . ... ........... 131

3.3.4.2 Dynamic Hazard Detection . ... ......... 132

3.4  Fault Simulation . .. ... ... ... .. .. ... ... . ... 132
3.4.1 Serial Fault Simulation . . . . . ... ... ........... 133

3.4.2 Parallel Fault Simulation . . . ... ... ............ 135
3.4.2.1 Parallel Fault Simulation . . . . . ... ....... 135

3.4.2.2  Parallel-Pattern Fault Simulation . . . . ... ... 137

3.4.3 Deductive Fault Simulation . . ... .............. 139

3.44  Concurrent Fault Simulation . . ... ............. 143

3.4.5 Differential Fault Simulation . ... ... ........... 146

3.4.6 Fault Detection . . ... .... ... .. ... .0uo...... 148

3.47 Comparison of Fault Simulation Techniques . . . ... ... 149

3.4.8 Alternatives to Fault Simulation. . . . . ... ......... 151
34.8.1 ToggleCoverage . ... ... ... ... ...... 151

3482 FaultSampling . ................... 151

3.4.8.3 Critical Path Tracing . . ... ............ 152

3.4.8.4  Statistical Fault Analysis . . ... .......... 153

3.5 ConcludingRemarks . .. ........ ... .. ............ 154
3.6 Exercises . . . . . ... e 155
References . . . . . . . . . . . .. e 158
Test Generation 161

Michael S. Hsiao

4.1
4.2

4.3

Introduction . . . ... ... . .. . ... 161
Random Test Generation. . . . . . . .. . ... ... . 163
4.2.1 Exhaustive Testing . ... ... .. ... ............ 166
Theoretical Background: Boolean Difference . . . ... ... ... .. 166

4.3.1 Untestable Faults . . . .. ... ... ... ... ........ 168



4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12
4.13

Contents

Designing a Stuck-At ATPG for Combinational Circuits . . . . . . ..
4.4.1 A Naive ATPG Algorithm . . . . ... ... ...........
44.1.1 Backtracking . . ... ... .. ............
4.42 A Basic ATPG Algorithm . . . ... ... ............
443 DAlgorithm . ........ ... ... .. ... ...,
444 PODEM . . . ... ..
445 FAN . . .o
4.4.6  Static Logic Implications . . . . ... ... ...........
4.47 Dynamic Logic Implications . . . . . ... ...........
Designing a Sequential ATPG . . . ... ... ..............
4.5.1 Time Frame Expansion . . . . .. ... ... ... .......
4.5.2  5-Valued Algebra Is Insufficient . . . . . ... .........
4.5.3  Gated Clocks and Multiple Clocks . ... ...........
Untestable Fault Identification . ... ..................
4.6.1 Multiple-Line Conflict Analysis . . ... ............
Designing a Simulation-Based ATPG . . . ... ... ..........
4.7.1 Overview . . . . . . . o i e
4.7.2  Genetic-Algorithm-Based ATPG . . . . ... ..........
4.7.2.1 Issues Concerning the GA Population .. ... ..
4.7.2.2  Issues Concerning GA Parameters . ... ... ..
4.7.2.3  TIssues Concerning the Fitness Function . . . . ..
4724 CASE Studies . ....................
Advanced Simulation-Based ATPG . . . ... ..............
4.8.1  Seeding the GA with Helpful Sequences . . . ... ... ...
4.8.2  Logic-Simulation-Based ATPG . . ... ............
4.8.3 Spectrum-Based ATPG . .....................
Hybrid Deterministic and Simulation-Based ATPG . . ... ... ..
49.1 ALT-TESTHybrid . . . ... ... ... .. ...........
ATPG for Non-Stuck-At Faults . . ... ... .. ... ... ......
4.10.1 Designing an ATPG That Captures Delay Defects . . . . . . .
4.10.1.1 Classification of Path-Delay Faults . . .. ... ..
4.10.1.2 ATPG for Path-Delay Faults . . . .. ... ... ..
4.10.2 ATPG for Transition Faults . . .. ... ... ... ......
4.10.3 Transition ATPG Using Stuck-At ATPG . ...........
4.10.4 Transition ATPG Using Stuck-At Vectors . . .........
4.10.4.1 Transition Test Chains via Weighted
Transition Graph . . ... ... ... ........
4.10.5 Bridging Fault ATPG . . ... ... ... ... .........
Other Topics in Test Generation . . ... ... .............
4.11.1 Test Set Compaction . . . ... .. ... ... .........
4.11.2 N-Detect ATPG. . . . ... ... . ... . ... .. . ...,
4.11.3 ATPG for Acyclic Sequential Circuits . . . . . ... ... ...
4.11.4 IDDQTesting. . . . . . . . . . i it
4.11.5 Designing a High-Level ATPG . . . . ... ...........
Concluding Remarks . . ... ... ... .. ...............
Exercises . . . . . . . e

References . . . . . . . . e e e

Xi



Xii Contents

5 Logic Built-In Self-Test 263
Laung-Terng (L.-T.) Wang

5.1 Introduction . . . ...... ... .. ... ... 264

52 BISTDesignRules . . ... ....... ... .. ... . ........ 266

5.2.1 Unknown Source Blocking . . . . ... ... .......... 267

52.1.1 AnalogBlocks ... .................. 267

5.2.1.2  Memories and Non-Scan Storage Elements . . . . 268

5.2.1.3  Combinational Feedback Loops . . . . . ... ... 268

5.2.1.4  Asynchronous Set/Reset Signals . . . ... ... .. 268

5.2.1.5 Tristate Buses . ... ... ... ... ........ 269

52.1.6 FalsePaths ... .................... 270

52.1.7 Critical Paths . . . .. ... .............. 270

5.2.1.8  Multiple-Cycle Paths . . ... ... ......... 270

52.1.9 FloatingPorts . . ... ................ 270

5.2.1.10 Bidirectional /O Ports . .. ... .......... 271

522 Re-Timing . ... .. ... .. .. e 271

5.3  Test Pattern Generation . . ... .. .. ... ... ... .. ..., 271

5.3.1 Exhaustive Testing . . ... ... ... ... .......... 275

5.3.1.1 Binary Counter . .. ................. 275

53.1.2 Complete LFSR . ... ... ............. 275

5.3.2 Pseudo-Random Testing . .. .................. 277

5.3.2.1 Maximum-Length LFSR . .. ... ......... 278

5.3.22 Weighted LFSR . ... ................ 278

5.3.2.3  Cellular Automata . . . . ... ............ 278

5.3.3  Pseudo-Exhaustive Testing . . . . . ... ... ......... 281

5.3.3.1  Verification Testing . . . . . ... .......... 282

5.3.3.2  Segmentation Testing . . . . ... .......... 287

5.34 DelayFaultTesting . ... .................... 288

5.3.5  Summary . . . ... e e e e e e e e e e 289

5.4  Output Response Analysis . . ... .................... 290

54.1 OnesCountTesting . .. ... .................. 291

5.4.2  Transition Count Testing . . . . ... ... ... ........ 291

5.4.3 Signature Analysis . . . ... ... ... ... .. ... ... .. 292

5.4.3.1  Serial Signature Analysis . . . ... ......... 292

5.4.3.2  Parallel Signature Analysis . . . ... ........ 294

5.5 Logic BIST Architectures. . . . . . . . .. .. . ... ... 296

5.5.1  BIST Architectures for Circuits without Scan Chains . . .. 296
5.5.1.1 A Centralized and Separate Board-Level

BIST Architecture . . . ... ... .......... 296

5.5.1.2  Built-In Evaluation and Self-Test (BEST) . . . .. 297

5.5.2  BIST Architectures for Circuits with Scan Chains . . . . . . 297

5.5.2.1 LSSD On-Chip Self-Test . ... ... ........ 297

5.5.2.2  Self-Testing Using MISR and Parallel SRSG . . . 298

5.5.3  BIST Architectures Using Register Reconfiguration . . . . . 298

5.5.3.1  Built-In Logic Block Observer . . . ... ... ... 299



Contents Xiii

5.5.3.2  Modified Built-In Logic Block Observer . . . . .. 300
5.5.3.3  Concurrent Built-In Logic Block Observer . . . . . 300
5.5.3.4  Circular Self-Test Path (CSTP) . ... ... .... 302
5.5.4  BIST Architectures Using Concurrent Checking
Circuits . . . . . . . . e 303
5.5.4.1  Concurrent Self-Verification . . . ... ....... 303
555 Summary . . . ... 304
5.6  Fault Coverage Enhancement . . ... ... ............... 304
5.6.1 TestPoint Insertion . . . . .. ... ... ... .. ....... 305
5.6.1.1  Test Point Placement . . ... ............ 306
5.6.1.2  Control Point Activation . ... ........... 307
5.6.2 Mixed-Mode BIST . . . . ... ... ... ... ..., 308
5.6.2.1 ROM Compression . . . ... ... ......... 308
5.6.22 LFSRReseeding . . .................. 308
5.6.2.3  Embedding Deterministic Patterns . . . . ... .. 309
5.6.3 Hybrid BIST . .. ... .. ... .. ..., 309
5.7 BIST Timing Control . . . .. ... ... ... ... ... ........ 310
5.7.1 Single-Capture . . . . .. ... ... ... 310
5.7.1.1  One-Hot Single-Capture . ... ........... 310
5.7.1.2  Staggered Single-Capture . ... .......... 311
572 Skewed-Load . . ... ........ ... ... ... ... . ... 311
5.7.2.1 One-Hot Skewed-Load . ............... 312
5.7.2.2  Aligned Skewed-Load . . . . ... .......... 312
5.7.2.3  Staggered Skewed-Load . .............. 314
5.7.3 Double-Capture . . ... .. ... ... ... ... ... ... 315
5.7.3.1 One-Hot Double-Capture . . . ... ......... 315
5.7.3.2  Aligned Double-Capture . . ... .......... 316
5.7.3.3  Staggered Double-Capture . . . .. ... ...... 317
5.7.4 FaultDetection . ... ........ .. ... o...... 317
5.8  ADesign Practice . . ... ... ... ... ... 319
5.8.1  BIST Rule Checking and Violation Repair . . . . . ... ... 320
5.8.2  Logic BIST System Design . . . . .. ... ... ........ 320
5.8.2.1  Logic BIST Architecture . ... ........... 320
5822 TPGandORA . .................... 321
5823 TestController . . ... ... ... .......... 322
5.8.24 Clock GatingBlock . .. ... ............ 323
5.8.2.5 Re-Timing Logic . . . ... .. ... ... ...... 325
5.8.2.6  Fault Coverage Enhancing Logic and Diagnostic
Logic . ... ... . .. ... .. 325
5.8.3 RTLBIST Synthesis . . . . . ... ... .. ... ........ 326
5.8.4  Design Verification and Fault Coverage
Enhancement . .. ........................ 326
5.9 Concluding Remarks . ... ... ... .................. 327
510 EXercises . . . . . . ... e 327
Acknowledgments . . . . . . . . ... 331
References . . . . . . . . . L 331



Xiv Contents

6 Test Compression 341

Xiaowei Li, Kuen-Jong Lee, and Nur A. Touba

6.1 Introduction . . ... ... ... . ... ... 342
6.2  Test Stimulus Compression . . . . .. ... ... .. .......... 344
6.2.1 Code-Based Schemes . ... ................... 345
6.2.1.1 Dictionary Code (Fixed-to-Fixed) . . ... ... .. 345
6.2.1.2 Huffman Code (Fixed-to-Variable) . ... ... .. 346
6.2.1.3  Run-Length Code (Variable-to-Fixed) . ... ... 349
6.2.1.4  Golomb Code (Variable-to-Variable) . ... .. .. 350
6.2.2  Linear-Decompression-Based Schemes . .. ... ... ... 351
6.2.2.1  Combinational Linear Decompressors . . . . . . . 355
6.2.2.2  Fixed-Length Sequential
Linear Decompressors . . . .. .. ......... 355
6.2.2.3  Variable-Length Sequential
Linear Decompressors . . . . ... ... ...... 356
6.2.2.4  Combined Linear and
Nonlinear Decompressors . . . . ... ....... 357
6.2.3  Broadcast-Scan-Based Schemes . . . .. ... ......... 359
6.2.3.1 BroadcastScan . ................... 359
6.2.3.2 IlinoisScan . .. ................... 360
6.2.3.3  Multiple-Input Broadcast Scan . . .. ... . ... 362
6.2.3.4  Reconfigurable Broadcast Scan . . . ..... ... 362
6.2.35 Virtual Scan . ..................... 363
6.3  Test Response Compaction . .. ... .................. 364
6.3.1 SpaceCompaction. . . . .. ... ... ..., 367
6.3.1.1 Zero-Aliasing Linear Compaction . . . . . ... .. 367
6.3.1.2 X-Compact . ... ... ... .. ... ... ... 369
6.3.1.3 X-Blocking . ...................... 371
6.3.14 X-Masking . ...................... 372
6.3.1.5 X-dImpact . . ... ... o 373
6.3.2 Time Compaction . . . . .. ... ... ... 374
6.3.3  Mixed Time and Space Compaction . ... .......... 375
6.4 Industry Practices . . . . . . . . . . . .. 376
6.4.1 OPMISR+ . . . . . e 377
6.4.2 Embedded Deterministic Test . . . . .. ... ......... 379
6.4.3 VirtualScanand UltraScan . . . . ... ... .......... 382
6.44 Adaptive Scan . . ... ... ... ... e 385
6.4.5 ETCompression . . . . ... ... .. .. uuuuiueieeno.. 386
6.4.6 Summary . . . . . ... e e 388
6.5 ConcludingRemarks . . ... ... ... ... .. ... ........ 388
6.6 EXercises . . . . . . . . ... e 389
Acknowledgments . . . . . . . .. .. 390

References . . . . . . . . e 391



Contents XV

7 Logic Diagnosis 397
Shi-Yu Huang

7.1  Introduction . . . . . . . .. ... ... 397

7.2  Combinational Logic Diagnosis . . . . . ... ... ........... 401

7.2.1 Cause-Effect Analysis . . ... ... ... ... ......... 401

7.2.1.1  Compaction and Compression of Fault Dictionary 403

7.2.2 Effect-Cause Analysis . . . . .. ... ... ... ........ 405

7.2.2.1  Structural Pruning . . ................ 407

7.2.2.2  Backtrace Algorithm . .. ... ........... 408

7.2.2.3 Inject-and-Evaluate Paradigm . ... ... ... .. 409

7.2.3 Chip-Level Strategy . . . . ... .. ... ... ... ...... 418

7.2.3.1  Direct Partitioning . . . ... .. ... ... ... 418

7.2.3.2 Two-Phase Strategy . . . . ... ... ........ 420

7.2.3.3  Overall Chip-Level Diagnostic Flow . . . . .. . .. 424

7.2.4  Diagnostic Test Pattern Generation . . . . . .. ... ..... 425

7.2.5 Summary of Combinational Logic Diagnosis . ... ... .. 426

7.3 Scan Chain Diagnosis . . . . . . . . ... ... .. ... . ... 427

7.3.1  Preliminaries for Scan Chain Diagnosis . . .. ... ... .. 427

7.3.2  Hardware-Assisted Method . ... ... ... ......... 430

7.3.3  Modified Inject-and-Evaluate Paradigm . ... .. ... ... 432

7.3.4  Signal-Profiling-Based Method . . ... ............ 434

7.3.4.1 Diagnostic Test Sequence Selection . .. ... .. 434

7.3.4.2  Run-and-Scan Test Application . .. ... ... .. 434

7.3.4.3  Why Functional Sequence? . ............ 435

7.3.4.4  Profiling-Based Analysis . .. ............ 437

7.3.5 Summary of Scan Chain Diagnosis . . . ... ......... 441

7.4 Logic BIST Diagnosis . . . . . . . . .. . . .. 442

7.4.1  Overview of Logic BIST Diagnosis . . .. ........... 442

7.4.2 Interval-Based Methods . . ... ................ 443

7.4.3 Masking-Based Methods . . ... .. ... ........... 446

7.5 ConcludingRemarks . .. ... ...................... 449

7.6  EXercises . . . . . . ... 450

Acknowledgments . . . . . . . .. 453

References . . . . . . . . . . . . . e 454

8 Memory Testing and Built-In Self-Test 461
Cheng-Wen Wu

8.1 Introduction . .. .. ... ... .. .. ... 462

8.2  RAM Functional Fault Models and Test Algorithms . . . . ... ... 463

8.2.1 RAM Functional Fault Models . . . . ... ... ........ 463

8.2.2 RAMDynamicFaults . . ... ... ... ... ......... 465

8.2.3  Functional Test Patterns and Algorithms . . . ... ... .. 466

824 March Tests . . .. . . . . i i i 469



XVi

Contents
8.2.5 Comparison of RAM Test Patterns . . . .. .......... 471
8.2.6 Word-Oriented Memory . . .. ... ... ........... 473
8.2.7 Multi-Port Memory . . . . . ... ... ... 473
8.3  RAM Fault Simulation and Test Algorithm Generation . . . ... .. 475
8.3.1 FaultSimulation. . ... ... .................. 476
8.3.2 RAMSES . . . . . 477
8.3.3  Test Algorithm Generation by Simulation . . . ... ... .. 480
8.4  Memory Built-In Self-Test . . . .. ... ................. 488
8.4.1 RAM Specification and BIST Design Strategy . . . . ... .. 489
8.4.2  BIST Architectures and Functions . . . ... ......... 493
8.4.3 BIST Implementation . . . . .. ... .............. 495
8.4.4 BRAINS: A RAM BIST Compiler . ... ............ 500
85 ConcludingRemarks . . ... ..... ... ... ............ 508
8.6 Exercises . . . . ... . ... 509
Acknowledgments . . . . . . . ... 513
References . . . . . . . . . . . . e 513
Memory Diagnosis and Built-In Self-Repair 517
Cheng-Wen Wu
9.1 Introduction . . . .. ... ... ... ... 518
9.1.1  Why Memory Diagnosis? . . . . . . ... ... . ........ 518
9.1.2 Why MemoryRepair? . . .. ... ... ... .......... 518
9.2  Refined Fault Models and Diagnostic Test Algorithms . . . ... .. 518
9.3  BIST with Diagnostic Support. . . . . .. ... ... ... ....... 521
9.3.1 Controller. . . . ... ... ... .. 521
9.3.2  Test Pattern Generator . . . ... ... ... .......... 523
9.3.3  Fault Site Indicator (FSI) . . . . . ... .. ... ... ..... 524
9.4  RAM Defect Diagnosis and Failure Analysis. . . . ... ... ..... 526
9.5 RAM Redundancy Analysis Algorithms . . ... ... ......... 529
9.5.1 Conventional Redundancy Analysis Algorithms . . . . . . . . 529
9.5.2  The Essential Spare Pivoting Algorithm . . ... ... .. .. 531
9.5.3 RepairRateand Overhead . . ... ............... 535
9.6 Built-InSelf-Repair . . .. ... ... ... ... ... ... .. . .... 537
9.6.1 Redundancy Organization . ... ................ 537
9.6.2  BISR Architecture and Procedure . . . . ... ......... 538
9.6.3 BISTModule . . . .. ... ... ... ... ... ....... 541
9.6.4 BIRAModule. . ............ ... ... ... ..... 542
9.6.5 AnlIndustrialCase. ... ..................... 545
9.6.6 RepairRateand Yield ...................... 548
9.7 Concluding Remarks . ... ... ...... ... ... .. ....... 552
9.8  EXercises . . . . . . ... e 552
Acknowledgments . . . . . . ... L 553

References . . . . . . . . . . e 553



11

Contents Xvii
10 Boundary Scan and Core-Based Testing 557
Kuen-Jong Lee
10.1 Introduction . . . .. .. .. .. . . ... 558
10.1.1 IEEE 1149 Standard Family . . . . . ... ... ....... 558
10.1.2 Core-Based Design and Test Considerations . . . . . .. .. 559
10.2 Digital Boundary Scan (IEEE Std. 1149.1) . . ... ... ... ... 561
10.2.1 BasicConcept . . . . .. ... .. ... 561
10.2.2 Overall 1149.1 Test Architecture and Operations . . . . . . 562
10.2.3 Test Access Port and Bus Protocols . . . . ... ....... 564
10.2.4 Data Registers and Boundary-Scan Cells . . ... ... .. 565
10.2.5 TAPController . . . . ... ... ... ... .......... 567
10.2.6 Instruction Register and Instruction Set . . . . ... .. .. 569
10.2.7 Boundary-Scan Description Language . . . . ... ... .. 574
10.2.8 On-Chip Test Support with Boundary Scan . . . . ... .. 574
10.2.9 Board and System-Level Boundary-Scan Control
Architectures . . . . .. .. .. ... .. ... 576
10.3 Boundary Scan for Advanced Networks (IEEE 1149.6) . . .. . .. 579
10.3.1 Rationalefor 1149.6. . . . . .. .. ... ... ... ..... 579
10.3.2 1149.6 Analog Test Receiver . . . . . ... ... ....... 581
10.3.3 1149.6 Digital Driver Logic. . . . . . . . ... ... ..... 581
10.3.4 1149.6 Digital Receiver Logic . . ... ... ... ...... 582
10.3.5 1149.6 Test Access Port (TAP) . . . . .. ... ... ..... 584
10.3.6  Summary . . . . . . ... e 585
10.4 Embedded Core Test Standard (IEEE Std. 1500) . .. ... .. .. 585
10.4.1 SOC (System-on-Chip) Test Problems . . .. ... ... .. 585
10.4.2 Overall Architecture . . . . .. ... ... ... ........ 587
10.4.3 Wrapper Components and Functions . . . .. ... .. ... 589
10.4.4 Instruction Set . . . . . . .. .. .. ... 597
10.4.5 Core Test Language (CTL) . . . . ... ... .. ....... 601
10.4.6 Core Test Supporting and System Test Configurations . . 603
10.4.7 Hierarchical Test Control and Plug-and-Play . ... .. .. 606
10.5 Comparisons between the 1500 and 1149.1 Standards . . ... .. 610
10.6 Concluding Remarks . . .. ... ... ... ... ........... 611
10.7 EXErcCiSes . . . . v v v i v it it e e e e e e e e e e e e 612
Acknowledgments . . . . . . .. ... 614
References . . . . . . . . . . . e 614
Analog and Mixed-Signal Testing 619
Chauchin Su
11.1 Introduction . . .. ... ... ... ... 619
11.1.1 Analog Circuit Properties . . . . . . ... ... ........ 620
11.1.1.1 Continuous Signals . . . ... ... ... ..... 621



Xviii

11.3

11.4

Contents

11.1.1.2 Large Range of Circuits . . ... .........
11.1.1.3 Nonlinear Characteristics . .. ... .......
11.1.1.4 Feedback Ambiguity . ... ... ... ......
11.1.1.5 Complicated Cause-Effect Relationship . . . . .
11.1.1.6  Absence of Suitable Fault Model . . ... .. ..

11.1.1.7 Requirement for Accurate Instruments for
Measuring Analog Signals . . ... ... .. ...
11.1.2 Analog Defect Mechanisms and Fault Models . . . . . . ..
11.1.21 HardFaults. . . . ... ... ... ........
11.1.2.2 SoftFaults ... ... ... ... ... .......
Analog Circuit Testing . . . . . . ... ... .. ... ... . .....
11.2.1 Analog Test Approaches . . ... ...............
11.2.2 Analog Test Waveforms . . . . . ... ... ..........
11.2.3 DC Parametric Testing . . .. ... ... ... ........
11.2.3.1 Open-Loop Gain Measurement . . ... ... ..
11.2.3.2 Unit Gain Bandwidth Measurement . . ... ..
11.2.3.3 Common Mode Rejection Ratio Measurement .
11.2.3.4 Power Supply Rejection Ratio Measurement . .
11.2.4 AC Parametric Testing . . ... ... ... .. ... ....
11.2.4.1 Maximal Output Amplitude Measurement . . . .
11.2.4.2 Frequency Response Measurement . . . . . . . .
11.2.4.3 SNR and Distortion Measurement . .. ... ..
11.2.4.4 Intermodulation Distortion Measurement . . . .
Mixed-Signal Testing . . . . . .. ... ... ... ... ... . ...,
11.3.1 Introduction to Analog-Digital Conversion . ... ... ..
11.3.2 ADC and DAC Circuit Structure . . . . . ... ... .....
11.3.2.1 DAC Circuit Structure . . . . .. ... ......
11.3.2.2 ADC Circuit Structure . . . . ... ... .....
11.3.3 ADC/DAC Specification and Fault Models . . . .. ... ..
11.3.4 1IEEE 1057 Standard . . ... ... ... ...........
11.3.5 Time-Domain ADC Testing . . . ... ... ... .......
11.3.5.1 CodeBins. ... ... ... .............
11.3.5.2 Code Transition Level Test (Static) . . . ... ..
11.3.5.3 Code Transition Level Test (Dynamic) . . . . . .
11.3.54 Gainand Offset Test . . ... ...........
11.3.5.5 Linearity Error and Maximal Static Error . . . .
11.3.5.6 Sine Wave Curve-Fit Test. . . . . ... ... ...
11.3.6 Frequency-Domain ADC Testing . . . ... .........
IEEE 1149.4 Standard for a Mixed-Signal Test Bus . . . ... ...
11.4.1 IEEE 11494 Overview . . . . .. .. ... ... ......
11.4.1.1 Scope of the Standard . . .. ... ........
11.4.2 1IEEE 1149.4 Circuit Structures . . . . . .. ... ... ...
11.4.3 1EEE 11494 Instructions . . . . .. .. .. .. ... ....
11.4.3.1 Mandatory Instructions . . ... .........
11.4.3.2 Optional Instructions . . . . ... .........



12

Contents Xix
1144 TEEE 11494 TestModes . . . . .. ... ... ... ..... 666
11.4.4.1 Open/Short Interconnect Testing . . . . ... .. 666
11.4.4.2 Extended Interconnect Measurement . ... .. 667
11.4.4.3 Complex Network Measurement . .. ... ... 671
11.4.4.4 High-Performance Configuration . . . ... ... 672
11.5 Concluding Remarks . . ... ... ... ... ... .......... 673
11.6 EXxercises . . . . . . . .. . i i e 673
Acknowledgments . . . . . . ... ... 676
References . . . . . . . . . . e 677
Test Technology Trends in the Nanometer Age 679

Kwang-Ting (Tim) Cheng, Wen-Ben Jone, and Laung-Terng (L.-T.) Wang
12.1 Test Technology Roadmap . . . .. ... ... ... .......... 680
12.2 Delay Testing . . . . . . . . . . i 685
12.2.1 Test Application Schemes for Testing Delay Defects . . . . 686
12.2.2 Delay Fault Models . . .. ... ................ 687
1223 Summary . . . . . .. 690

12.3 Coping with Physical Failures, Soft Errors,

and Reliability Issues . . . . .. .. ... ... ... ... ....... 692
12.3.1 Signal Integrity and Power Supply Noise . . ... ... .. 692
12.3.1.1 Integrity Loss Fault Model . . . . ... ... ... 693
12.3.1.2 Location . .. ... .. ... .. ... ..., 694
12.3.1.3 Pattern Generation . ... ... ... ....... 694
12.3.1.4 Sensing and Readout . . ... ... ........ 695
12.3.2 Parametric Defects, Process Variations, and Yield . . . . . 696
12.3.2.1 Defect-Based Test . . . ... ... ......... 697
12.3.3 SoftErrors . . . . . . ... . . e 698
12.3.4 Fault Tolerance . ... ... .................. 701
12.3.5 Defect and Error Tolerance . ... .............. 705
124 FPGA Testing . . . . . . . . . ittt e 706
12.4.1 TImpact of Programmability . ... ... ... ........ 706
12.4.2 Testing Approaches . . . .. ... ... ... ......... 708
12.4.3 Built-In Self-Test of Logic Resources . . . . . ... ... .. 708
12.4.4 Built-In Self-Test of Routing Resources . .. ... .. ... 709
1245 RecentTrends . .. ... .... .. ... ... ..... 710
125 MEMS Testing . . . . . . . o v i it e et e e e e 711
12.5.1 Basic Concepts for Capacitive MEMS Devices . . ... .. 711
12.5.2 MEMS Built-In Self-Test . . . . . ... ... ......... 713
12.5.2.1 Sensitivity BIST Scheme . . . . ... ... .... 713
12.5.2.2 Symmetry BIST Scheme . . . ... ... ... .. 713
12.5.2.3 A Dual-Mode BIST Technique . . . . . ... ... 714
12.5.3 A BIST Example for MEMS Comb Accelerometers . 716
1254 Conclusions . . ... ... ... ... ... ..., 719



XX Contents

12.6 High-speed /O Testing . . . . . . . . . . .. i . 719
12.6.1 1/O Interface Technology and Trend . . ... ... ... .. 720
12.6.2 1/O Testing and Challenges . . . . . . ... ... ....... 724
12.6.3 High-Performance I/O Test Solutions . . . ... ... ... 725
12.6.4 Future Challenges . . . .. ... ... ... ... ....... 726
127 RF Testing . . . . . . . . . it 728
12.7.1 Core RF Building Blocks . . . . ... ... .......... 729
12.7.2 RF Test Specifications and Measurement Procedures . . . 730
12721 Gain . . . . .. o 730
12.7.2.2 Conversion Gain . . . . ... .. ... ... .... 731
12.7.2.3 Third-Order Intercept . . . . . ... ... ..... 731
12.7.2.4 Noise Figure . . . ... ... ... ... ...... 733
12.7.3 Tests for System-Level Specifications . ... ........ 733
12.7.3.1 Adjacent Channel Power Ratio . ... ...... 733

12.7.3.2 Error Vector Magnitude, Magnitude Error, and
Phase Error . .................... 734
12.7.4 Current and Future Trends . . ... ............. 735
12741 FutureTrends . ... .... ... ... ...... 736
12.8 Concluding Remarks . . . .. ... ... ... ... .......... 737
Acknowledgments . . . . . . . ... 738
References . . . . . . . . . . . e 738
Index 751



PREFACE

Beginning with the introduction of commercial manufacturing of integrated circuits
(ICs) in the early 1960s, modern electronics testing has a history of more than 40
years. The integrated circuit was developed in 1958, concurrently at Texas Instru-
ments (TI) and Fairchild Semiconductor. Today, semiconductors lie at the heart of
ongoing advances across the electronics industry. The industry enjoyed a banner
year in 2005, with almost $230 billion in sales worldwide.

The introduction of new technologies, especially nanometer technologies with
90 nm or smaller geometry, has allowed the semiconductor industry to keep pace
with increased performance-capacity demands from consumers. This has bright-
ened the prospects for future industry growth; however, new technologies come
with new challenges. Semiconductor test costs have been growing steadily. Test
costs can now amount to 40% of overall product cost. In addition, product quality
and yield could drop significantly if these chips are not designed for testability and
thoroughly tested.

New problems encountered in semiconductor testing are being recognized
quickly today. Because very-large-scale integration (VLSI) technologies drive test
technologies, more effective test technologies are key to success in today’s compet-
itive marketplace. It is recognized that, in order to tackle the problems associated
with testing semiconductor devices, it is necessary to attack them at earlier design
stages. The field of design for testability (DFT) is a mature one today. Test cost
can be significantly reduced by inserting DFT in earlier design stages; thus, it is
important to expose students and practitioners to the most recent, yet fundamen-
tal, VLSI test principles and DFT architectures in an effort to help them design
better quality products now and in the future that can be reliably manufactured in
quantity.

In this context, it is important to make sure that undergraduates and practition-
ers, in addition to graduate students and researchers, are introduced to the variety
of problems encountered in semiconductor testing and that they are made aware
of the new methods being developed to solve these problems at earlier stages of
design. A very important factor in doing so is to ensure that introductory textbooks
for semiconductor testing are kept up to date with the latest process, design, and
test technology advances.

This textbook is being made available with this goal in mind. It is a fundamental
yet comprehensive guide to new DFT methods that will show readers how to design
a testable and quality product, drive down test cost, improve product quality and
yield, and speed up time-to-market and time-to-volume. Intended users of the book
include undergraduates, engineers and engineering managers who have the need
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to know; it is not simply for graduate students and researchers. It focuses more on
basic VLSI test concepts, principles, and DFT architectures and includes the latest
advances that are in practice today, including at-speed scan testing, test compres-
sion, at-speed built-in self-test (BIST), memory built-in self-repair (BISR), and test
technology trends. These advanced subjects are key to system-on-chip (SOC) designs
in the nanometer age.

The semiconductor testing field is quite broad today, so the scope of this textbook
is also broad, with topics ranging from digital to memory to AMS (analog and mixed-
signal) testing. This book will allow the readers to understand fundamental VLSI
test principles and DFT architectures and prepare them for tackling test problems
caused by advances in semiconductor manufacturing technology and complex SOC
designs in the nanometer era.

Each chapter of this book follows a specific template format. The subject matter
of the chapter is first introduced, with a historical perspective provided, if needed.
Then, related methods and algorithms are explained in sufficient detail while keep-
ing the level of intended users in mind. Examples are taken from the current
DFT tools, products, etc. Comprehensive reference sources are then provided. Each
chapter (except Chapter 12) ends with a variety of exercises for students to solve to
help them master the topic at hand.

Chapter 1 provides a comprehensive introduction to semiconductor testing. It
begins with a discussion of the importance of testing as a requisite for achieving
manufacturing quality of semiconductor devices and then identifies difficulties in
VLSI testing. After the author explains how testing can be viewed as a design moving
through different abstraction levels, a historical view of the development of VLSI
testing is presented.

Chapter 2 is devoted to introducing the basic concepts of design for testability
(DFT). Testability analysis to assess the testability of a logic circuit is discussed.
Ad hoc and structured approaches to ease testing are then presented, which leads
to scan design, a widely used DFT method in industry today. The remainder of
the chapter is then devoted to scan cell designs, scan architectures, scan design
rules, and scan synthesis and verification. Following a discussion of scan cost issues,
special-purpose scan designs suitable for delay testing, system debug, and soft error
protection, RTL DFT techniques are briefly introduced.

Chapter 3 and Chapter 4 are devoted to the familiar areas of logic/fault simulation
and automatic test pattern generation (ATPG), respectively. Care is taken to describe
methods and algorithms used in these two areas in an easy-to-grasp language while
maintaining the overall perspective of VLSI testing.

Chapter 5 is completely devoted to logic built-in self-test (BIST). After a brief
introduction, specific BIST design rules are presented. On-chip test pattern generation
and output response analysis are then explained. The chapter puts great emphasis
on documenting important on-chip test pattern generation techniques and logic
BIST architectures, as these subjects are not yet well researched. At-speed BIST
techniques, a key feature in this chapter, are then explained in detail. A design
practice example provided at the end of the chapter invites readers to design a logic
BIST system.
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Chapter 6 then jumps into the most important test cost aspect of testability inser-
tion into a scan design. How cost reduction can be achieved using test compression
is discussed in greater detail. Representative, commercially available compression
tools are introduced so readers (practitioners) can appreciate what is best suited to
their needs.

Chapter 7 delves into the topic of logic diagnosis. Techniques for combinational
logic diagnosis based on cause—effect analysis, effect—-cause analysis, and chip-level
strategy are first described. Then, innovative techniques for scan chain diagnosis
and logic BIST diagnosis are explained in detail.

Chapter 8 and Chapter 9 cover the full spectrum of memory test and diagnosis
methods. In both chapters, after a description of basic memory test and diagnosis
concepts, memory BIST and memory BISR architectures are then explained in detail.
Memory fault simulation, a unique topic, is also discussed in Chapter 8.

Chapter 10 covers boundary scan and core-based testing for board-level and
system-level testing. The IEEE 1149 standard addresses boundary-scan-based test-
ing; after a brief history, the boundary-scan standards (IEEE 1149.1 and 1149.6)
are discussed. The newly endorsed IEEE 1500 core-based testing standard is then
described.

Chapter 11 is devoted to analog and mixed-signal testing. Important analog cir-
cuit properties and their defect mechanisms and fault models are described first.
Methods for analog circuit testing are then explained. Mixed-signal circuit testing
is introduced by a discussion of ADC/DAC testing. The IEEE 1057 standard for dig-
itizing waveform recorders is then explained. A related standard, IEEE 1149.4, and
instructions for mixed-signal test buses are covered in detail. Special topics related
to ADC/DAC testing, including time-domain ADC testing and frequency-domain ADC
testing, are also touched on in this chapter.

Chapter 12 is devoted to test technology trends in the nanometer age. It presents
an international test technology roadmap to put these new trends in perspective
and predicts test technology needs in the coming 10 to 15 years, such as better
methods for delay testing, as well as coping with physical failures, soft errors, and
reliability issues. The emerging field of FPGA and MEMS testing is briefly touched
upon before the chapter jumps into other modern topics such as high-speed I/0
testing and RF testing.



IN THE CLASSROOM

This book is designed to be used as a text for undergraduate and graduate students
in computer engineering, computer science, or electrical engineering. It is also
intended for use as a reference book for researchers and practitioners. The book
is self-contained, with most topics covered extensively from fundamental concepts
to current techniques used in research and industry. We assume that the students
have had basic courses in logic design, computer science, and probability theory.
Attempts are made to present algorithms, where possible, in an easily understood
format.

In order to encourage self-learning, readers are advised to check the Elsevier
companion Web site (www.books.elsevier.com/companions) to access up-to-date
software and presentation slides, including errata, if any. Professors will have addi-
tional privileges to assess the solutions directory for all exercises given in each
chapter by visiting www.textbooks.elsevier.com and registering a username and
password.

Laung-Terng (L.-T.) Wang
Cheng-Wen Wu
Xiaoging Wen
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CHAPTER 1

INTRODUCTION

Yinghua Min
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

Charles Stroud
Electrical and Computer Engineering, Auburn University, Auburn, Alabama

ABOUT THIS CHAPTER

The introduction of integrated circuits (ICs), commonly referred to as microchips
or simply chips, was accompanied by the need to test these devices. Small-scale
integration (SSI) devices, with tens of transistors in the early 1960s, and medium-
scale integration (MSI) devices, with hundreds of transistors in the late 1960s,
were relatively simple to test. However, in the 1970s, large-scale integration (LSI)
devices, with thousands and tens of thousands of transistors, created a number of
challenges when testing these devices. In the early 1980s, very-large-scale integra-
tion (VLSI) devices with hundreds of thousands of transistors were introduced.
Steady advances in VLSI technology have resulted in devices with hundreds of
millions of transistors and many new testing challenges. This chapter provides an
overview of various aspects of VLSI testing and introduces fundamental concepts
necessary for studying and comprehending this book.

1.1 IMPORTANCE OF TESTING

Following the so-called Moore’s law [Moore 1965], the scale of ICs has doubled
every 18 months. A simple example of this trend is the progression from SSI to VLSI
devices. In the 1980s, the term “VLSI” was used for chips having more than 100,000
transistors and has continued to be used over time to refer to chips with millions
and now hundreds of millions of transistors. In 1986, the first megabit random-
access memory (RAM) contained more than 1 million transistors. Microprocessors
produced in 1994 contained more than 3 million transistors [Arthistory 2005]. VLSI
devices with many millions of transistors are commonly used in today’s computers
and electronic appliances. This is a direct result of the steadily decreasing dimen-
sions, referred to as feature size, of the transistors and interconnecting wires from
tens of microns to tens of nanometers, with current submicron technologies based
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on a feature size of less than 100 nanometers (100 nm). The reduction in feature size
has also resulted in increased operating frequencies and clock speeds; for example,
in 1971, the first microprocessor ran at a clock frequency of 108 KHz, while current
commercially available microprocessors commonly run at several gigahertz.

The reduction in feature size increases the probability that a manufacturing
defect in the IC will result in a faulty chip. A very small defect can easily result in a
faulty transistor or interconnecting wire when the feature size is less than 100 nm.
Furthermore, it takes only one faulty transistor or wire to make the entire chip fail
to function properly or at the required operating frequency. Yet, defects created
during the manufacturing process are unavoidable, and, as a result, some number
of ICs is expected to be faulty; therefore, testing is required to guarantee fault-
free products, regardless of whether the product is a VLSI device or an electronic
system composed of many VLSI devices. It is also necessary to test components at
various stages during the manufacturing process. For example, in order to produce
an electronic system, we must produce ICs, use these ICs to assemble printed
circuit boards (PCBs), and then use the PCBs to assemble the system. There is
general agreement with the rule of ten, which says that the cost of detecting a
faulty IC increases by an order of magnitude as we move through each stage of
manufacturing, from device level to board level to system level and finally to system
operation in the field.

Electronic testing includes IC testing, PCB testing, and system testing at the
various manufacturing stages and, in some cases, during system operation. Testing
is used not only to find the fault-free devices, PCBs, and systems but also to improve
production yield at the various stages of manufacturing by analyzing the cause of
defects when faults are encountered. In some systems, periodic testing is performed
to ensure fault-free system operation and to initiate repair procedures when faults
are detected. Hence, VLSI testing is important to designers, product engineers, test
engineers, managers, manufacturers, and end-users [JTha 2003].

1.2 TESTING DURING THE VLSI LIFECYCLE

Testing typically consists of applying a set of test stimuli to the inputs of the circuit
under test (CUT) while analyzing the output responses, as illustrated in Figure 1.1
Circuits that produce the correct output responses for all input stimuli pass the
test and are considered to be fault-free. Those circuits that fail to produce a correct
response at any point during the test sequence are assumed to be faulty. Testing is

Input; Output;
Input 4 Circuit 5 Output |pass/Eail
Test . Under e| Response ——»
O Input Output )
Stimuli puty > Test(CUT) Pultm > Analysis

® FIGURE 1.1

Basic testing approach.
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performed at various stages in the lifecycle of a VLSI device, including during the
VLSI development process, the electronic system manufacturing process, and, in
some cases, system-level operation. In this section, we examine these various types
of testing, beginning with the VLSI development process.

1.2.1 VLSI Development Process

The VLSI development process is illustrated in Figure 1.2, where it can be seen that
some form of testing is involved at each stage of the process. Based on a customer or
project need, a VLSI device requirement is determined and formulated as a design
specification. Designers are then responsible for synthesizing a circuit that satisfies
the design specification and for verifying the design. Design verification is a pre-
dictive analysis that ensures that the synthesized design will perform the required
functions when manufactured. When a design error is found, modifications to the
design are necessary and design verification must be repeated. As a result, design
verification can be considered as a form of testing.

Once verified, the VLSI design then goes to fabrication. At the same time, test
engineers develop a test procedure based on the design specification and fault mod-
els associated with the implementation technology. A defect is a flaw or physical
imperfection that may lead to a fault. Due to unavoidable statistical flaws in the
materials and masks used to fabricate ICs, it is impossible for 100% of any particular
kind of IC to be defect-free. Thus, the first testing performed during the manu-
facturing process is to test the ICs fabricated on the wafer in order to determine
which devices are defective. The chips that pass the wafer-level test are extracted
and packaged. The packaged devices are retested to eliminate those devices that
may have been damaged during the packaging process or put into defective pack-
ages. Additional testing is used to assure the final quality before going to market.
This final testing includes measurement of such parameters as input/output timing

Design Specification

e l

Design < Design Verification
!
Fabrication < Wafer Test
!
Packaging < Package Test
!
Quality Assurance |« Final Testing

® FIGURE 1.2

VLS| development process.
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specifications, voltage, and current. In addition, burn-in or stress testing is often
performed where chips are subjected to high temperatures and supply voltage. The
purpose of burn-in testing is to accelerate the effect of defects that could lead to
failures in the early stages of operation of the IC. Failure mode analysis (FMA) is
typically used at all stages of IC manufacturing testing to identify improvements
to processes that will result in an increase in the number of defect-free devices
produced.

Design verification and yield are not only important aspects of the VLSI develop-
ment process but are also important in VLSI testing. The following two subsections
provide more detail on verification and yield, while their relationship to and impact
on testing are discussed throughout this chapter.

1.2.1.1 Design Verification

A VLSI design can be described at different levels of abstraction, as illustrated in
Figure 1.3. The design process is essentially a process of transforming a higher
level description of a design to a lower level description. Starting from a design
specification, a behavioral (architecture) level description is developed in very high
speed integrated circuit hardware description language (VHDL) or Verilog or as
a C program and simulated to determine if it is functionally equivalent to the spec-
ification. The design is then described at the register-transfer level (RTL), which
contains more structural information in terms of the sequential and combinational
logic functions to be performed in the data paths and control circuits. The RTL
description must be verified with respect to the functionality of the behavioral
description before proceeding with synthesis to the logical level.

A logical-level implementation is automatically synthesized from the RTL descrip-
tion to produce the gate-level design of the circuit. The logical-level implementation
should be verified in as much detail as possible to guarantee the correct func-
tionality of the final design. In the final step, the logical-level description must be
transformed to a physical-level description in order to obtain the physical place-
ment and interconnection of the transistors in the VLSI device prior to fabrication.

Design Specification

AN - P L .......................... i

| Behavioral (Architecture) Level |

'

| Register-Transfer Level |

'

| Logical (Gate) Level |

| Physical (Transistor) Level |

® FIGURE 1.3

Design hierarchy.
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This physical-level description is used to verify that the final design will meet timing
and operating frequency specifications.

There are many tools available to assist in the design verification process includ-
ing computer-aided design (CAD) synthesis and simulation tools, hardware emu-
lation, and formal verification methods; however, design verification takes time,
and insufficient verification fails to detect design errors. As a result, design verifi-
cation is economically significant as it has a definite impact on time-to-market. It
is interesting to note that many design verification techniques are borrowed from
test technology because verifying a design is similar to testing a physical product.
Furthermore, the test stimuli developed for design verification of the RTL, logical,
and physical levels of abstraction are often used, in conjunction with the associ-
ated output responses obtained from simulation, to test the VLSI device during the
manufacturing process.

1.2.1.2 Yield and Reject Rate

Some percentage of the manufactured ICs is expected to be faulty due to manufac-
turing defects. The yield of a manufacturing process is defined as the percentage
of acceptable parts among all parts that are fabricated:

Vield — _ Number of acceptable parts

Total number of parts fabricated

There are two types of yield loss: catastrophic and parametric. Catastrophic yield
loss is due to random defects, and parametric yield loss is due to process variations.
Automation of and improvements in a VLSI fabrication process line drastically
reduce the particle density that creates random defects over time; consequently,
parametric variations due to process fluctuations become the dominant reason for
yield loss.

When ICs are tested, the following two undesirable situations may occur:

1. A faulty device appears to be a good part passing the test.
2. A good device fails the test and appears as faulty.

These two outcomes are often due to a poorly designed test or the lack of design for
testability (DFT). As a result of the first case, even if all products pass acceptance
test, some faulty devices will still be found in the manufactured electronic system.
When these faulty devices are returned to the IC manufacturer, they undergo FMA
for possible improvements to the VLSI development and manufacturing processes.
The ratio of field-rejected parts to all parts passing quality assurance testing is
referred to as the reject rate, also called the defect level:

Number of faulty parts passing final test

Reject rate = : -
/ Total number of parts passing final test

The reject rate provides an indication of the overall quality of the VLSI testing
process [Bushnell 2000]. Generally speaking, a reject rate of 500 parts per million
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(PPM) chips may be considered to be acceptable, while 100 PPM or lower represents
high quality. The goal of six sigma manufacturing, also referred to as zero defects,
is 3.4 PPM or less.

1.2.2 Electronic System Manufacturing Process

An electronic system generally consists of one or more units comprised of PCBs on
which one or more VLSI devices are mounted. The steps required to manufacture
an electronic system, illustrated in Figure 1.4, are also susceptible to defects. As
a result, testing is required at these various stages to verify that the final product
is fault-free. The PCB fabrication process is a photolithographic process similar in
some ways to the VLSI fabrication process. The bare PCBs are tested in order to
discard defective boards prior to assembly with expensive VLSI components. After
assembly, including placement of components and wave soldering, the PCB is tested
again; however, this time the PCB test includes testing of the various components,
including VLSI devices, mounted on the PCB to verify that the components are
properly mounted and have not been damaged during the PCB assembly process.
Tested PCBs are assembled in units and systems that are tested before shipment
for field operation, but unit- and system-level testing typically may not utilize the
same tests as those used for the PCBs and VLSI devices.

1.2.3 System-Level Operation

When a manufactured electronic system is shipped to the field, it may undergo
testing as part of the installation process to ensure that the system is fault-free before
placing the system into operation. During system operation, a number of events can
result in a system failure; these events include single-bit upsets, electromigration,
and material aging. Suppose the state of system operation is represented as S, where
S = 0 means the system operates normally and S = 1 represents a system failure.
Then S is a function of time ¢, as shown in Figure 1.5.

PCB Fabrication

!

Bare Board Test

A

PCB Assembly < Board Test
Unit Assembly < Unit Test

!

System Assembly

A

System Test

= FIGURE 1.4

Manufacturing process.
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® FIGURE 1.5

System operation and repair.

Suppose the system is in normal operation at ¢t = 0, it fails at #;, and the nor-
mal system operation is recovered at f, by some software modification, reset, or
hardware replacement. Similar failure and repair events happen at ¢, and ¢,. The
duration of normal system operation (T,), for intervals such as ¢, — ¢, and #; — 1,, is
generally assumed to be a random number that is exponentially distributed. This
is known as the exponential failure law. Hence, the probability that a system will
operate normally until time ¢, referred to as reliability, is given by:

P(T,>t)=e™

where A is the failure rate. Because a system is composed of a number of com-
ponents, the overall failure rate for the system is the sum of the individual failure
rates ();) for each of the k components:

The mean time between failures (MTBF) is given by:
MTBF = /Ooe’\’dl‘ = 1
. A

Similarly, the repair time (R) is also assumed to obey an exponential distribution
and is given by:

PR>t)=e™
where  is the repair rate. Hence, the mean time to repair (MTTR) is given by:

MTTR = l
s

The fraction of time that a system is operating normally (failure-free) is the system
availability and is given by:

o MTBF
System availability = MTBF + MTTR
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This formula is widely used in reliability engineering; for example, telephone sys-
tems are required to have system availability of 0.9999 (simply called four nines),
while high-reliability systems may require seven nines or more.

Testing is required to ensure system availability. This testing may be in the form
of online testing or offline testing, or a combination of both. Online testing is
performed concurrently with normal system operation in order to detect failures
as quickly as possible. Offline testing requires that the system, or a portion of the
system, be taken out of service in order to perform the test. As a result, offline testing
is performed periodically, usually during low-demand periods of system operation.
In many cases, when online testing detects a failure, offline test techniques are
then used for diagnosis (location and identification) of the failing replaceable
component to improve the subsequent repair time. When the system has been
repaired, the system, or portion thereof, is retested using offline techniques to verify
that the repair was successful prior to placing the system back in service for normal
operation.

The faulty components (PCBs, in most cases) replaced during the system repair
procedure are sometimes sent to the manufacturing facility or a repair facility for
further testing. This typically consists of board-level tests, similar to the board-level
test used to test the manufactured PCBs. The goal in this case is to determine the
location of the faulty VLSI devices on the PCB for replacement and repair. The PCB
is then retested to verify successful repair prior to shipment back to the field for use
as a replacement component for future system repairs. It should be noted that this
PCB test, diagnosis, and repair scenario is viable only when it is cost effective, as
might be the case with expensive PCBs. The important point to note is that testing
goes on long after the VLSI development process and is performed throughout the
life cycle of many VLSI devices.

1.3 CHALLENGES IN VLSI TESTING

The physical implementation of a VLSI device is very complicated. Figure 1.6 illus-
trates the microscopic world of the physical structure of an IC with six levels of
interconnections and effective transistor channel length of 0.12 wm [Geppert 1998].
Any small piece of dust or abnormality of geometrical shape can result in a defect.
Defects are caused by process variations or random localized manufacturing imper-
fections. Process variations affecting transistor channel length, transistor threshold
voltage, metal interconnect width and thickness, and intermetal layer dielectric
thickness will impact logical and timing performance. Random localized imperfec-
tions can result in resistive bridging between metal lines, resistive opens in metal
lines, improper via formation, etc.

Recent advances in physics, chemistry, and materials science have allowed pro-
duction of nanometer-scale structures using sophisticated fabrication techniques. It
is widely recognized that nanometer-scale devices will have much higher manufac-
turing defect rates compared to conventional complementary metal oxide semicon-
ductor (CMOS) devices. They will have much lower current drive capabilities and
will be much more sensitive to noise-induced errors such as crosstalk. They will
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= FIGURE 1.6

IBM CMOS integrated circuit with six levels of interconnections and effective transistor channel length
of 0.12 um [Geppert 1998].

be more susceptible to failures of transistors and wires due to soft (cosmic) errors,
process variations, electromigration, and material aging. As the integration scale
increases, more transistors can be fabricated on a single chip, thus reducing the
cost per transistor; however, the difficulty of testing each transistor increases due
to the increased complexity of the VLSI device and increased potential for defects,
as well as the difficulty of detecting the faults produced by those defects. This
trend is further accentuated by the competitive price pressures of the high-volume
consumer market, as well as by the emergence of system-on-chip (SOC) imple-
mentations; mixed-signal circuits and systems, including radiofrequency (RF); and
microelectromechanical systems (MEMSs).

1.3.1 Test Generation

A fault is a representation of a defect reflecting a physical condition that causes
a circuit to fail to perform in a required manner. A failure is a deviation in the
performance of a circuit or system from its specified behavior and represents an
irreversible state of a component such that it must be repaired in order for it
to provide its intended design function. A circuit error is a wrong output signal
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produced by a defective circuit. A circuit defect may lead to a fault, a fault can
cause a circuit error, and a circuit error can result in a system failure.

To test a circuit with n inputs and m outputs, a set of input patterns is applied
to the circuit under test (CUT), and its responses are compared to the known
good responses of a fault-free circuit. Each input pattern is called a test vector.
In order to completely test a circuit, many test patterns are required; however, it
is difficult to know how many test vectors are needed to guarantee a satisfactory
reject rate. If the CUT is an n-input combinational logic circuit, we can apply all 2"
possible input patterns for testing stuck-at faults; this approach is called exhaustive
testing. If a circuit passes exhaustive testing, we might assume that the circuit does
not contain functional faults, regardless of its internal structure. Unfortunately,
exhaustive testing is not practical when » is large. Furthermore, applying all 2"
possible input patterns to an n-input sequential logic circuit will not guarantee
that all possible states have been visited. However, this example of applying all
possible input test patterns to an n-input combinational logic circuit also illustrates
the basic idea of functional testing, where every entry in the truth table for the
combinational logic circuit is tested to determine whether it produces the correct
response. In practice, functional testing is considered by many designers and test
engineers to be testing the CUT as thoroughly as possible in a system-like mode of
operation. In either case, one problem is the lack of a quantitative measure of the
defects that will be detected by the set of functional test vectors.

A more practical approach is to select specific test patterns based on circuit
structural information and a set of fault models. This approach is called structural
testing. Structural testing saves time and improves test efficiency, as the total
number of test patterns is decreased because the test vectors target specific faults
that would result from defects in the manufactured circuit. Structural testing cannot
guarantee detection of all possible manufacturing defects, as the test vectors are
generated based on specific fault models; however, the use of fault models does
provide a quantitative measure of the fault-detection capabilities of a given set of
test vectors for a targeted fault model. This measure is called fault coverage and
is defined as:

Number of detected faults
Total number of faults

Fault coverage =

It may be impossible to obtain a fault coverage of 100% because of the existence
of undetectable faults. An undetectable fault means there is no test to distinguish
the fault-free circuit from a faulty circuit containing that fault. As a result, the fault
coverage can be modified and expressed as the fault detection efficiency, also
referred to as the effective fault coverage, which is defined as:

Number of detected faults
Total number of faults —number of undetectable faults

Fault detection effeciency =

In order to calculate fault detection efficiency, let alone reach 100% fault coverage,
all of the undetectable faults in the circuit must be correctly identified, which is
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usually a difficult task. Fault coverage is linked to the yield and the defect level by
the following expression [Williams 1981]:

Defect level = 1— yield = fault coverage)

From this equation, we can show that a PCB with 40 chips, each having 90% fault
coverage and 90% yield, could result in a reject rate of 41.9%, or 419,000 PPM. As
a result, improving fault coverage can be easier and less expensive than improving
manufacturing yield because making yield enhancements can be costly; therefore,
generating test stimuli with high fault coverage is very important.

Any input pattern, or sequence of input patterns, that produces a different output
response in a faulty circuit from that of the fault-free circuit is a test vector, or
sequence of test vectors, that will detect the faults. The goal of test generation is to
find an efficient set of test vectors that detects all faults considered for that circuit.
Because a given set of test vectors is usually capable of detecting many faults in a
circuit, fault simulation is typically used to evaluate the fault coverage obtained
by that set of test vectors. As a result, fault models are needed for fault simulation
as well as for test generation.

1.3.2 Fault Models

Because of the diversity of VLSI defects, it is difficult to generate tests for real
defects. Fault models are necessary for generating and evaluating a set of test
vectors. Generally, a good fault model should satisfy two criteria: (1) It should
accurately reflect the behavior of defects, and (2) it should be computationally
efficient in terms of fault simulation and test pattern generation. Many fault models
have been proposed [Abramovici 1994], but, unfortunately, no single fault model
accurately reflects the behavior of all possible defects that can occur. As a result, a
combination of different fault models is often used in the generation and evaluation
of test vectors and testing approaches developed for VLSI devices.

For a given fault model there will be k different types of faults that can occur at
each potential fault site (k =2 for most fault models). A given circuit contains n
possible fault sites, depending on the fault model. Assuming that there can be only
one fault in the circuit, then the total number of possible single faults, referred to
as the single-fault model or single-fault assumption, is given by:

Number of single faults =k xn

In reality of course, multiple faults may occur in the circuit. The total number of
possible combinations of multiple faults, referred to as the multiple-fault model,
is given by:

Number of multiple faults = (k+1)" —1

In the multiple-fault model, each fault site can have one of k possible faults or be
fault-free, hence the (k+ 1) term. Note that the latter term in the expression (the
“—1”) represents the fault-free circuit, where all n fault sites are fault-free. While the
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multiple-fault model is more accurate than the single-fault assumption, the number
of possible faults becomes impractically large other than for a small number of
fault types and fault sites. Fortunately, it has been shown that high fault coverage
obtained under the single-fault assumption will result in high fault coverage for
the multiple-fault model [Bushnell 2000]; therefore, the single-fault assumption is
typically used for test generation and evaluation.

Under the single-fault assumption, two or more faults may result in identical
faulty behavior for all possible input patterns. These faults are called equivalent
faults and can be represented by any single fault from the set of equivalent faults.
As a result, the number of single faults to be considered for test generation for
a given circuit is usually much less than k x n. This reduction of the entire set
of single faults by removing equivalent faults is referred to as fault collapsing.
Fault collapsing helps to reduce both test generation and fault simulation times. In
the following subsections, we review some well-known and commonly used fault
models.

1.3.2.1 Stuck-At Faults

The stuck-at fault is a logical fault model that has been used successfully for decades.
A stuck-at fault affects the state of logic signals on lines in a logic circuit, including
primary inputs (PIs), primary outputs (POs), internal gate inputs and outputs,
fanout stems (sources), and fanout branches. A stuck-at fault transforms the correct
value on the faulty signal line to appear to be stuck at a constant logic value, either a
logic 0 or a logic 1, referred to as stuck-at-0 (SAQ) or stuck-at-1 (SA1), respectively.

Consider the example circuit shown in Figure 1.7, where the nine signal lines
representing potential fault sites are labeled alphabetically. There are 18 (2 x 9)
possible faulty circuits under the single-fault assumption. Table 1.1 gives the truth
tables for the fault-free circuit and the faulty circuits for all possible single stuck-at
faults. It should be noted that, rather than a direct short to a logic 0 or logic 1
value, the stuck-at fault is emulated by disconnection of the source for the signal
and connection to a constant logic 0 or 1 value. This can be seen in Table 1.1, where
SAO on fanout branch line d behaves differently from SAO on fanout branch line
e, while the single SAO fault on the fanout source line b behaves as if both fanout
branches line d and line e are SAQ.

X1

X5 ° d
e f

Xg —C

m FIGURE 1.7

Example circuit.
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TABLE 1.1 m Truth Tables for Fault-Free and Faulty Circuits of
Figure 1.7

X1 Xx; | 000 | 001 | 010 | O11 | 100 | 101 | 110 | 111
0 0
0 0

y
a SAO
a SAl
b SAO
b SA1
¢ SAO
¢ SAl
d SAO
d SAl
e SAO
e SAl
f SAO
f SAl
g SAO
g SAl

e
O O Oo|o

O O O o o|o
= T = T = =

O O O O O O o o o o o

The truth table entries where the faulty circuit produces an output response
different from that of the fault-free circuit are highlighted in gray. As a result, the
input values for the highlighted truth table entries represent valid test vectors to
detect the associated stuck-at faults. With the exception of line d SA1, line e SAQ,
and line f SA1, all other faults can be detected with two or more test vectors;
therefore, test vectors 011 and 100 must be included in any set of test vectors that
will obtain 100% fault coverage for this circuit. These two test vectors detect a total
of ten faults, and the remaining eight faults can be detected with test vectors 001
and 110; therefore, this set of four test vectors obtains 100% single stuck-at fault
coverage for this circuit.

Four sets of equivalent faults can be observed in Table 1.1. One fault from each
set can be used to represent all of the equivalent faults in that set. Because there
is a total of ten unique faulty responses to the complete set of input test patterns,
then ten faults constitute the set of collapsed faults for the circuit. Stuck-at fault
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collapsing typically reduces the total number of faults by 50 to 60% [Bushnell
2000]. Fault collapsing for stuck-at faults is based on the fact that a SAO at the input
to an AND (NAND) gate is equivalent to the SAO (SA1) at the output of the gate.
Similarly, a SA1 at the input to an OR (NOR) gate is equivalent to the SA1 (SAO0)
at the output of the gate. For an inverter, a SAO (SA1) at the input is equivalent
to the SA1 (SAO) at the output of the inverter. Furthermore, a stuck-at fault at the
source (output of the driving gate) of a fanout-free net is equivalent to the same
stuck-at fault at the destination (gate input being driven). Therefore, the number of
collapsed stuck-at faults in any combinational circuit constructed from elementary
logic gates (AND, OR, NAND, NOR, and inverter) is given by:

Number of collapsed faults = 2 x (number of POs +number of fanout stems)
+ total number of gate (including inverter) inputs
— total number of inverters

The example circuit in Figure 1.7 has one primary output and one fanout stem. The
total number of gate inputs is 7, including the input to the one inverter; therefore,
the number of collapsed faults =2 x (1+1)+7 —1 = 10. Note that single-input
gates, including buffers, are treated the same as an inverter in the calculation of the
number of collapsed faults because all faults at the input of the gate are equivalent
to faults at the output.

A number of interesting properties are associated with detecting stuck-at faults
in combinational logic circuits; for example, two such properties are described by
the following theorems [Abramovici 1994]:

Theorem 1.1

A set of test vectors that detects all single stuck-at faults on all primary inputs of a
fanout-free combinational logic circuit will detect all single stuck-at faults in that
circuit.

Theorem 1.2

A set of test vectors that detect all single stuck-at faults on all primary inputs and
all fanout branches of a combinational logic circuit will detect all single stuck-at
faults in that circuit.

The stuck-at fault model can also be applied to sequential circuits; however, high
fault coverage test generation for sequential circuits is much more difficult than
for combinational circuits because, for most faults in a sequential logic circuit, it
is necessary to generate sequences of test vectors. Therefore, DFT techniques are
frequently used to ease sequential circuit test generation.

Although it is physically possible for a line to be SAO or SA1, many other defects
within a circuit can also be detected with test vectors developed to detect stuck-at
faults. The idea of N-detect single stuck-at fault test vectors was proposed to detect
more defects not covered by the stuck-at fault model [Ma 1995]. In an N-detect
set of test vectors, each single stuck-at fault is detected by at least N different



Introduction 15

test vectors; however, test vectors generated using the stuck-at fault model do not
necessarily guarantee the detection of all possible defects, so other fault models are
needed.

1.3.2.2 Transistor Faults

At the switch level, a transistor can be stuck-open or stuck-short, also referred to
as stuck-off or stuck-on, respectively. The stuck-at fault model cannot accurately
reflect the behavior of stuck-open and stuck-short faults in CMOS logic circuits
because of the multiple transistors used to construct CMOS logic gates. To illustrate
this point, consider the two-input CMOS NOR gate shown in Figure 1.8. Suppose
transistor N, is stuck-open. When the input vector AB = 01 is applied, output Z
should be a logic 0, but the stuck-open fault causes Z to be isolated from ground
(Vgg). Because transistors P, and N, are not conducting at this time, Z keeps its
previous state, either a logic 0 or 1. In order to detect this fault, an ordered sequence
of two test vectors AB =00 — 01 is required. For the fault-free circuit, the input 00
produces Z =1 and 01 produces Z = 0 such that a falling transition at Z appears.
But, for the faulty circuit, while the test vector 00 produces Z = 1, the subsequent
test vector 01 will retain Z = 1 without a falling transition such that the faulty
circuit behaves like a level-sensitive latch. Thus, a stuck-open fault in a CMOS
combinational circuit requires a sequence of two vectors for detection rather than
a single test vector for a stuck-at fault.

Stuck-short faults, on the other hand, will produce a conducting path between
Vpp and Vgg. For example, if transistor N, is stuck-short, there will be a conducting
path between Vp, and Vg for the test vector 00. This creates a voltage divider at
the output node Z where the logic level voltage will be a function of the resistances
of the conducting transistors. This voltage may or may not be interpreted as an
incorrect logic level by the gate inputs driven by the gate with the transistor fault;
however, stuck-short transistor faults may be detected by monitoring the power
supply current during steady state, referred to as Ippo. This technique of monitor-
ing the steady-state power supply current to detect transistor stuck-short faults is
referred to as Iy, testing.

® FIGURE 1.8

Two-input CMOS NOR gate.
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The circuit in Figure 1.8 has a total of eight (2 x 4) possible single transistor faults;
however, there are equivalent faults at the transistor level, as stuck-open faults in
a group of series transistors (such as P, and P,) are indistinguishable. The same
holds true for stuck-short faults in a group of parallel transistors (such as N; and
N,); therefore, fault collapsing can be applied to transistor-level circuits [Stroud
2002]. The number of collapsed transistor faults in a circuit is given by:

Number of collapsed faults =2 x T —Tg+Gg—Tp+Gp

where T is the total number of transistors, T is the total number of transistors in
series, Gy is the total number of groups of transistors in series, T is the total number
of transistors in parallel, and G, is the total number of groups of transistors in
parallel. For the two-input NOR gate of Figure 1.8, there are four transistors (7' = 4),
two transistors (P; and P,) in the only group of series transistors (T =2 and Gy = 1),
and two transistors (N; and N,) in the only group of parallel transistors (7, = 2 and
G, = 1); hence, the number of collapsed faults is 6. The fault equivalence associated
with the transistors can also be seen in Table 1.2, which gives the behavior of
the fault-free circuit and each of the 8 possible faulty circuits under the single-
fault assumption. Note that table entries labeled “last Z” indicate that the output
node will retain its previous value and would require a two-test vector sequence
for detection. Similarly, entries labeled “Ip,” indicate that the output node logic
value will be a function of the voltage divider of the conducting transistors and can
be detected by Ip, testing. Because both N; and N, stuck-short faults as well as
P, and P, stuck-open faults can be tested by the same test set, the collapsed fault
count is 6, as proven above.

1.3.2.3 O0Open and Short Faults

Defects in VLSI devices can include opens and shorts in the wires that interconnect
the transistors forming the circuit. Opens in wires tend to behave like transistor

TABLE 1.2 m Truth Tables for Fault-Free and Faulty
Circuits of Figure 1.8

AB 00 01 10 11

V4 1 0 0 0

N; stuck-open 1 0 LastZ | O
Ny stuck-short long 0 0 0
N, stuck-open 1 Last 7 0 0
N, stuck-short long 0 0 0
P, stuck-open | Last Z 0 0 0
P, stuck-short 1 0 Iopa 0
P, stuck-open | Last Z 0 0 0
0

P, stuck-short 1 Ippo 0
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stuck-open faults when the faulty wire segment is interconnecting transistors to
form gates. On the other hand, opens tend to behave like stuck-at faults when
the faulty wire segment is interconnecting gates. Therefore, a set of test vectors
that provide high stuck-at fault coverage and high transistor fault coverage will
also detect open faults; however, a resistive open does not behave the same as a
transistor or stuck-at fault but instead affects the propagation delay of the signal
path, as will be discussed in the next subsection.

A short between two elements is commonly referred to as a bridging fault. These
elements can be transistor terminals or connections between transistors and gates.
The case of an element being shorted to power (Vpp) or ground (V) is equivalent
to the stuck-at fault model; however, when two signal wires are shorted together,
bridging fault models are required. In the first bridging fault model proposed, the
logic value of the shorted nets was modeled as a logical AND or OR of the logic
values on the shorted wires. This model is referred to as the wired-AND/wired-OR
bridging fault model. The wired-AND bridging fault means the signal net formed
by the two shorted lines will take on a logic 0 if either shorted line is sourcing a
logic 0, while the wired-OR bridging fault means the signal net will take on a logic
1 if either of the two lines is sourcing a logic 1. Therefore, this type of bridging fault
can be modeled with an additional AND or OR gate, as illustrated in Figure 1.9a,
where Ag and Bg denote the sources for the two shorted signal nets and A, and B,

Ag Ap  As Ap As Ap  As Ap
Bs Bp Bs Bp Bs I Bp Bs l Bp
Wired-AND Wired-OR A dominates B B dominates A
(@ (b)
As Ap As Ap As Ap As Ap

Bs Bp Bs Bp Bs Bp Bs Bp

A dominant-AND B A dominant-OR B B dominant-AND A B dominant-OR A
(©)

® FIGURE 1.9

Bridging fault models.
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TABLE 1.3 m Truth Tables for Bridging Fault Models of Figure 1.9
AgBg 0 0| O 0
AB,
Wired-AND
Wired-OR

A dominates B

—_
—_

B dominates A

A dominant-AND B
B dominant-AND A
A dominant-OR B
B dominant-OR A

O O O Ol O|o Oo|o
O O O OO0 OO0 Oo|o
= O O Ol O|F O|Oo
- - 2 O~ O~ O+
_ mh O |0 |~ O~
o O OO | O|O
I I N e
[P N N T

denote the destinations for the two nets. The truth tables for fault-free and faulty
behavior are given in Table 1.3.

The wired-AND/wired-OR bridging fault model was originally developed for bipo-
lar VLSI and does not accurately reflect the behavior of bridging faults typically
found in CMOS devices; therefore, the dominant bridging fault model was pro-
posed for CMOS VLSI where one driver is assumed to dominate the logic value on
the two shorted nets. Two fault types are normally evaluated per fault site, where
each driver is allowed to dominate the logic value on the shorted signal net (see
Figure 1.9b). The dominant bridging fault model is more difficult to detect because
the faulty behavior can only be observed on the dominated net, as opposed to both
nets in the case of the wired-AND/wired-OR bridging fault model. However, it has
been shown, and can be seen from the faulty behavior in Table 1.3, that a set of
test vectors that detects all dominant bridging faults is also guaranteed to detect all
wired-AND and wired-OR bridging faults.

The dominant bridging fault model does not accurately reflect the behavior of
a resistive short in some cases. A recent bridging fault model has been proposed
based on the behavior of resistive shorts observed in some CMOS VLSI devices
[Stroud 2000]. In this fault model, referred to as the dominant-AND/dominant-OR
bridging fault, one driver dominates the logic value of the shorted nets but only for
a given logic value (see Figure 1.9¢). While there are four fault types to evaluate for
this fault model, as opposed to only two for the dominant and wired-AND/wired-
OR models, a set of test vectors that detect all four dominant-AND/dominant-OR
bridging faults will also detect all dominant and wired-AND/wired-OR bridging
faults at that fault site.

Bridging faults commonly occur in practice and can be detected by I, testing.
It has also been shown that many bridging faults are detected by a set of test
vectors that obtains high stuck-at fault coverage, particularly with N-detect single
stuck-at fault test vectors. In the presence of a bridging fault, a combinational logic
circuit can have a feedback path and behave like a sequential logic circuit, making
the testing problem more complicated. Another complication in test generation for
bridging faults is the number of possible fault sites versus the number of realistic
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fault sites. While there are many signal nets in a VLSI circuit, it is impractical to
evaluate detection of bridging faults between any possible pair of nets; for example,
a circuit with N signal nets would have N-choose-2 = N x (N —1)/2 possible fault
sites, but a bridging fault between two nets on opposite sides of the device may
not be possible. One solution to this problem is to extract likely bridging fault sites
from the physical design after physical layout.

1.3.2.4 Delay Faults and Crosstalk

Fault-free operation of a logic circuit requires not only performing the logic function
correctly but also propagating the correct logic signals along paths within a specified
time limit. A delay fault causes excessive delay along a path such that the total
propagation delay falls outside the specified limit. Delay faults have become more
prevalent with decreasing feature sizes.

There are different delay fault models. In the gate-delay fault and the transition
fault models, a delay fault occurs when the time interval taken for a transition
from the gate input to its output exceeds its specified range. It should be noted that
simultaneous transitions at inputs of a gate may change the gate delay significantly
due to activation of multiple charge/discharge paths. The differences between the
gate-delay and transition fault models will be discussed in more detail in Chapter 12.
The other model is path-delay fault, which considers the cumulative propagation
delay along a signal path through the CUT—in other words, the sum of all gate
delays along the path; therefore, the path-delay fault model is more practical for
testing than the gate-delay fault (or the transition fault) model. A critical problem
encountered when dealing with path-delay faults is the large number of possible
paths in practical circuits. This number, in the worst case, is exponential for the
number of lines in the circuit, and in most practical cases the number of paths in
a circuit makes it impossible to enumerate all path-delay faults for the purpose of
test generation or fault simulation.

As with transistor stuck-open faults, delay faults require an ordered pair of test
vectors to sensitize a path through the logic circuit and to create a transition along
that path in order to measure the path delay. For example, consider the circuit in
Figure 1.10, where the fault-free delay associated with each gate is denoted by the
integer value label on that gate. The two test vectors, v, and v,, shown in the figure

0 0 x4

0 1 x, °
.
t=0

Va Vi

1 1 X3

® FIGURE 1.10

Path-delay fault test.



20 VLSI Test Principles and Architectures

are used to test the path delay from input x,, through the inverter and lower AND
gate, to the output y. Assuming the transition between the two test vectors occurs at
time ¢ = 0, the resulting transition propagates through the circuit with the fault-free
delays shown at each node in the circuit such that we expect to see the transition
at the output y at time ¢ = 7. A delay fault along this path would create a transition
at some later time, ¢ > 7. Of course, this measurement could require a high-speed,
high-precision test machine.

With decreasing feature sizes and increasing signal speeds, the problem of mod-
eling gate delays becomes more difficult. As technologies approach the deep sub-
micron region, the portion of delay contributed by gates reduces while the delay
due to interconnect becomes dominant. This is because the interconnect lengths
do not scale in proportion to the shrinking area of transistors that make up the
gates. In addition, if the operating frequencies also increase with scaling, then the
on-chip inductances can play a role in determining the interconnect delay for long
wide wires, such as those in clock trees and buses. However, wire delays can be
taken into account in the path-delay fault model based on the physical layout, as
interconnections are included in paths. As a result, it is no longer true that a path
delay is equal to the sum of all delays of gates along the path.

The use of nanometer technologies increases cross-coupling capacitance and
inductance between interconnects, leading to severe crosstalk effects that may result
in improper functioning of a chip. Crosstalk effects can be separated to two cate-
gories: crosstalk glitches and crosstalk delays. A crosstalk glitch is a pulse that is
provoked by coupling effects among interconnect lines. The magnitude of the glitch
depends on the ratio of the coupling capacitance to the line-to-ground capacitance.
When a transition signal is applied on a line that has a strong driver while stable
signals are applied at other lines that have weaker drivers, the stable signals may
experience coupling noise due to the transition of the stronger signal. Crosstalk
delay is a signal delay that is provoked by the same coupling effects among inter-
connect lines, but it may be produced even if line drivers are balanced but have
large loads. Because crosstalk causes a delay in addition to normal gate and inter-
connect delay, it is difficult to estimate the true circuit delay, which may lead to
severe signal delay problems. Conventional delay fault analysis may be invalid if
these effects are not taken into consideration based on the physical layout. Several
design techniques, including physical design and analysis tools, are being devel-
oped to help design for margin and minimization of crosstalk problems; however, it
may be impossible to anticipate in advance the full range of process variations and
manufacturing defects that may significantly aggravate the cross-coupling effects.
Hence, there is a critical need to develop testing techniques for manufacturing
defects that produce crosstalk effects.

1.3.2.5 Pattern Sensitivity and Coupling Faults

Manufacturing defects can be of a wide variety and manifest themselves as faults
that are not covered by the specific fault models for digital circuits discussed thus
far. This is particularly true in the case of densely packed memories. In high-
density RAMs, the contents of a cell or the ability of a memory cell to change
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can be influenced by the contents of its neighboring cells, referred to as a pattern
sensitivity fault. A coupling fault results when a transition in one cell causes the
content of another cell to change. Therefore, it is necessary when testing memories
to add tests for pattern sensitivity and coupling faults in addition to stuck-at faults.
Extensive work has been done on memory testing and many memory test algorithms
have been proposed [van de Goor 1991] [Bushnell 2000]. One of the most efficient
RAM test algorithms, in terms of test time and fault detection capability, currently
in use is the March LR algorithm illustrated in Table 1.4. This algorithm has a test
time on the order of 16N, where N is the number of address locations, and is capable
of detecting pattern sensitivity faults, intra-word coupling faults, and bridging faults
in the RAM. For word-oriented memories, a background data sequence (BDS)
must be added to detect faults within each word of the memory. The March LR
with BDS shown in Table 1.4 is for a RAM with 2-bit words. In general, the number
of BDSs =log,(K)+ 1, where K is the number of bits per word.

1.3.2.6 Analog Fault Models

Analog circuits are constructed with passive and active components. Typical analog
fault models include shorts, opens, and parameter variations in both active and
passive components. Shorts and opens usually result in catastrophic faults that
are relatively easy to detect. Parameter variations that cause components to be out
of their tolerance ranges result in parametric faults. An active component can
suffer from both direct current (DC) faults and alternate current (AC) faults. Op
amps typically occupy a much larger silicon area in monolithic ICs than passive
components and, hence, are more prone to manufacturing defects. As is the case
with a catastrophic fault, a single parametric fault can result in a malfunctioning
analog circuit; however, it is difficult to identify critical parameters and to sup-
ply a model of process fluctuations. Furthermore, because of the complex nature
of analog circuits, a direct application of digital fault models, other than shorts
and opens, is inadequate in capturing faulty behavior in analog circuits. It is also
difficult to model all practical faults.

TABLE 1.4 m March LR RAM Test Algorithm

Test Algorithm March Test Sequence

March LR w/o BDS $(w0); J(rO0, wl); 1(r1, wO, rO, rO, wl);

Arl, wO); 1(rO, wl, r1, r1, wO); 1(rO)

March LR with BDS $(w00); | (r00, wll); 1(r11, wOO, r00, r00, wll);
AMrll, w00); A(r00, wll, r11, r11, wOO);

1(r00, w01, w10, r10); Mr10, w01, rO1); 1(r01)

Notation: wO=write O (or all O's); rl =read 1 (or all 1's); 4 =address up; | =address
down; ¢ =address either way.



22 VLSI Test Principles and Architectures

1.4 LEVELS OF ABSTRACTION IN VLSI TESTING

In the design hierarchy, a higher level description has fewer implementation details
but more explicit functional information than a lower level description. As described
in Section 1.2.1.1, the various levels of abstraction include behavioral (architecture),
register-transfer, logical (gate), and physical (transistor) levels. The hierarchical
design process lends itself to hierarchical test development, but the fault models
described in the previous section are more appropriate for particular levels of
abstraction. In this section, we discuss test generation and the use of fault models
at these various levels of abstraction.

1.4.1 Register-Transfer Level and Behavioral Level

The demand for CAD tools for the design of digital circuits at high levels of
abstraction has led to the development of synthesis and simulation technologies.
The methodology in common practice today is to design, simulate, and synthesize
application-specific integrated circuits (ASICs) of millions of gates at the RTL.
So-called “black boxes” or intellectual property (IP) cores are often incorporated
in VLSI design, especially in SOC design, for which there may be very little, if any,
structural information. Traditional automatic test pattern generation (ATPG) tools
cannot effectively handle designs employing blocks for which the implementation
detail is either unknown or subject to change; however, several approaches to test
pattern generation at the RTL have been proposed. Most of these approaches are
able to generate test patterns of good quality, sometimes comparable to gate-level
ATPG tools. It is the lack of general applicability that prevents these approaches
from being widely accepted. Although some experimental results have shown that
RTL fault coverage can be quite close to fault coverage achieved at the gate level
when designs are completed and mapped to a technology library, it is unrealistic
to expect that stuck-at fault coverage at the RTL will be as high as at the gate level
[Min 2002].

To illustrate the importance of knowledge of the gate-level implementation on
test generation, consider the two example circuits of Figure 1.11 which implement
the following logic function, where x represents a “don’t care” product term:

f =abc +abc + xabc

Because both circuits are valid implementations of the functional description,
the gate-level implementation is not unique for a given RTL description. As a
result, it may be difficult to generate tests at the RTL and achieve stuck-at fault
coverage as high as at the gate level, as the stuck-at fault model is defined at the
gate level. For example, if the “don’t care” product term is assigned a logic 0, we
obtain the logic equation along with resultant implementation and associated set
of test vectors to detect all stuck-at faults shown in Figure 1.11a. If the “don’t care”
term is assigned a logic 1, on the other hand, we obtain the logic equation, gate-
level implementation, and set of test vectors shown in Figure 1.11b. Note that the
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Example of different implementations and their test vectors.

set of test vectors for Figure 1.11b is a subset of those required for Figure 1.11a
and, as a result, would not detect the four SA1 faults shown in the gate-level
implementation of Figure 1.11a. This example can also be illustrated by considering
Theorems 1.1 and 1.2. If ATPG assumes that a combinational logic circuit will
be fanout free based on the functional description, it could produce test vectors
to detect stuck-at faults for all primary inputs based on Theorem 1.1. Yet, if the
synthesized circuit contains fanout stems, the set of test vectors produced by the
APTG may not detect stuck-at faults on all fanout branches and, as a result of
Theorem 1.2, may not detect all stuck-at faults in the circuit. Note that the four
SA1 faults in Figure 1.11a not detected by the test vectors in Figure 1.11b are
located on the additional fanout branches in Figure 1.11a. Therefore, if the ATPG
is based on the functional description, test vectors can be generated based on
assumptions that may not necessarily hold once the gate-level implementation is
synthesized. Regardless, it is desirable to move ATPG operations toward higher
levels of abstraction while targeting new types of faults in deep submicron devices.
Because the main advantages of high-level approaches are compact test sets and
reduced computation time, it is expected that this trend will continue.

1.4.2 Gate Level

For decades, traditional IC test generation has been at the gate level based on the
gate-level netlist. The stuck-at fault model can easily be applied for which many
ATPG and fault simulation tools are commercially available. Very often the stuck-
at fault model is also employed to evaluate the effectiveness of the input stimuli
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used for simulation-based design verification. As a result, the design verification
stimuli are often also used for fault detection during manufacturing testing. In
addition to the stuck-at fault model, delay fault models and delay testing have
been traditionally based on the gate-level description. While bridging faults can
be modeled at the gate level, practical selection of potential bridging fault sites
requires physical design information. The gate-level description has advantages of
functionality and tractability because it lies between the RTL and physical levels;
however, it is now widely believed that test development at the gate level is not
sufficient for deep submicron designs.

1.4.3 Switch Level

For standard cell-based VLSI implementations, transistor fault models (stuck-open
and stuck-short) can be applied and evaluated based on the gate-level netlist. When
the switch-level model for each gate in the netlist is substituted, we obtain an
accurate abstraction of the netlist used for physical layout. In addition, transmission
gate and tristate buffer faults can also be tested at the switch level. For example,
it may be necessary to place buffers in parallel for improved drive capabilities. In
most gate-level models, these buffers will appear as a single buffer, but it is possible
to model a fault on any of the multiple buffers at the switch level. Furthermore,
a defect-based test methodology can be more effective with a switch-level model
of the circuit as it contains more detailed structural information than a gate-level
abstraction and will yield a more accurate defect coverage analysis. Of course, the
switch-level description is more complicated than the gate-level description for both
ATPG and fault simulation.

1.4.4 Physical Level

The physical level of abstraction is the most important for VLSI testing because it
provides the actual layout and routing information for the fabricated device and,
hence, the most accurate information for delay faults, crosstalk effects, and bridging
faults. For deep submicron IC chips, in order to characterize electrical properties of
interconnections, a distributed resistance-inductance-capacitance (RLC) model
is based on the physical layout. This is then used to analyze and test for potential
crosstalk problems. Furthermore, interconnect delays can be incorporated for more
accurate delay fault analysis.

One solution to the problem of determining likely bridging fault sites is to extract
the capacitance between the wires from the physical design after layout and routing
[Maxwell 1994]. This provides an accurate determination of those wires that are
adjacent and, therefore, likely to sustain bridging faults. In addition, the value of
the capacitance between two adjacent wires is proportional to the distance between
the wires and/or the length of adjacency. As a result, fault sites with the highest
capacitance value can be targeted for test generation and evaluation as these sites
have a higher probability of incurring bridging faults.
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1.5 HISTORICAL REVIEW OF VLSI TEST TECHNOLOGY

VLSI testing includes two processes: test generation and test application. The goal
of test generation is to produce test patterns for efficient testing. Test application
is the process of applying those test patterns to the CUT and analyzing the output
responses. Test application is performed by either automatic test equipment (ATE)
or test facilities in the chip itself. This section gives a brief historical review of VLSI
test technology development.

1.5.1 Automatic Test Equipment

Automatic test equipment (ATE) is computer-controlled equipment used in the
production testing of ICs (both at the wafer level and in packaged devices) and
PCBs. Test patterns are applied to the CUT and the output responses are compared
to stored responses for the fault-free circuit. In the 1960s, when ICs were first
introduced, it was foreseen that testing would become a bottleneck to high-volume
production of ICs unless the tasks normally performed by technicians and labora-
tory instruments could be automated. An IC tester controlled by a minicomputer
was developed in the mid-1960s, and the ATE industry was established. Since then,
with advances in VLSI and computer technology, the ATE industry has developed
electronic subassemblies (PCBs and backplanes), test systems, digital IC testers,
analog testers, and SOC testers. A custom tester is often developed for testing a
particular product, but a general-purpose ATE is often more flexible and enhances
the productivity of high-volume manufacturing. Generally, ATE consists of the fol-
lowing parts:

1. Computer—A powerful computer is the heart of any ATE for central control
and for making the test and measurement flexible for different products and
different test purposes.

2. Pin electronics and fixtures—ATE architectures can be divided into two major
subcomponents, the data generator and the pin electronics. The data genera-
tor supplies the input test vectors for the CUT, while the pin electronics are
responsible for formatting these vectors to produce waveforms of the desired
shape and timing. The pin electronics are also responsible for sampling the
CUT output responses at the desired time. In order to actually touch the pads
of an IC on a wafer or the pins of a packaged chip during testing, it is neces-
sary to have a fixture with probes for each pin of the IC under test. Current
VLSI devices may have over 1000 pins and require a tester with as many as
1024 pin channels. As a result, the pin electronics and fixtures constitute the
most expensive part of the ATE.

3. Test program—1In conjunction with the pin electronics, ATE contains wave-
form generators that are designed to change logic values at the setup and
hold times associated with a given input pin. A test pattern containing logic
1’s and 0’s must be translated to these various timing formats. Also, ATE cap-
tures primary output responses, which are then translated to output vectors
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for comparison with the fault-free responses. These translations and some
environment settings are controlled by the central computer; therefore, a
test program, usually written in a high-level language, becomes an important
ingredient for controlling these translations and environment settings. Algo-
rithmically generated test patterns may consist of subroutines, pattern and
test routine calls, or sequenced events. The test program also specifies the
timing format in terms of the tester edge set. An edge set is a data format with
timing information for applying new data to a chip input pin and includes
the input setup time, hold time, and the waveform type.

4. Digital signal processor (DSP)—Powerful 32-bit DSP techniques have been
widely applied to analog testing for capturing analog characteristics at high
frequencies. Digital signals are converted to analog signals and applied to the
analog circuit inputs, while the analog output signals are converted to digital
signals for response analysis by the DSP.

5. Accurate DC and AC measurement circuitry—ATE precision is a performance
metric specifying the smallest measurement that the tester can resolve in a
very low noise environment, especially for analog and mixed-signal testing.
For example, a clock jitter (phase noise) of no more than 10 ps is required to
properly test ICs that realize more than 100 Mb/s data rates. This requirement
is even higher for today’s high-performance ICs. The application of vectors
to a circuit with the intent of verifying the timing compliance depends on
the operational frequency of the ATE (e.g., 200 MHz, 500 MHz, or 1 GHz).
Ideally, the ATE operational frequency should be much higher than that of
the ICs under test. Unfortunately, this is a difficult problem because the ATE
itself is also constructed from ICs and limited by their maximum operating
frequency.

Automatic test equipment can be very expensive. To satisfy the needs of advanced
VLSI testing, the following features form the basis for keeping ATE costs under
control:

1. Modularization—Modular systems give users the flexibility to purchase and
use only those options that are suitable for the products under test.

2. Configurability—Test system configurability is essential for many test plat-
forms. As testing needs change, users can reconfigure the test resources for
particular products and continue to use the same basic framework.

3. Parallel test capabilities—Testing multiple devices in parallel improves the
throughput and productivity of the ATE. Higher throughput means lower
overall test cost.

4. Third-party components—The use of third-party hardware and software per-
mits adopting the best available equipment and approaches, thus giving rise
to competition that lowers test cost over time.
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From a test economics point of view, there has been a systematic decrease in
the capital cost of manufacturing a transistor over the past several decades as
we continue to deliver more complex devices; however, testing capital costs per
transistor have remained relatively constant. As a result, test costs are becoming an
increasing portion of the overall industry capital requirement per transistor, to the
extent that currently it costs almost as much to test as to manufacture a transistor.

From a test technology point of view on the other hand, ATE in the early 1980s
had resolution capabilities well in excess of the component requirements. In 1985,
for example, when testing a then fast 8-MHz 286 microprocessor, a 1-ns accuracy in
the control of input signal transitions, referred to as edge placement, was available
in ATE with very low yield loss due to tester tolerances. Later, for testing 700-MHz
Pentium III microprocessors, only a 100-ps edge placement accuracy was available
in ATE; thus, the hundredfold increase in CUT speed was accompanied by only a
tenfold increase in the tester accuracy [Gelsinger 2000].

1.5.2 Automatic Test Pattern Generation

In the early 1960s, structural testing was introduced and the stuck-at fault model
was employed. A complete ATPG algorithm, called the D-algorithm, was first pub-
lished [Roth 1966]. The D-algorithm uses a logical value to represent both the
“good” and the “faulty” circuit values simultaneously and can generate a test for
any stuck-at fault, as long as a test for that fault exists. Although the computational
complexity of the D-algorithm is high, its theoretical significance is widely recog-
nized. The next landmark effort in ATPG was the PODEM algorithm [Goel 1981],
which searches the circuit primary input space based on simulation to enhance
computation efficiency. Since then, ATPG algorithms have become an important
topic for research and development, many improvements have been proposed, and
many commercial ATPG tools have appeared. For example, FAN [Fujiwara 1983]
and SOCRATES [Schulz 1988] were remarkable contributions to accelerating the
ATPG process. Underlying many current ATPG tools, a common approach is to start
from a random set of test patterns. Fault simulation then determines how many of
the potential faults are detected. With the fault simulation results used as guidance,
additional vectors are generated for hard-to-detect faults to obtain the desired or
reasonable fault coverage. The International Symposium on Circuits and Systems
(ISCAS) announced combinational logic benchmark circuits in 1985 [Brglez 1985]
and sequential logic benchmark circuits in 1989 [Brglez 1989] to assist in ATPG
research and development in the international test community. A major problem
in large combinational logic circuits with thousands of gates was the identification
of undetectable faults. In the 1990s, very fast ATPG systems were developed using
advanced high-performance computers which provided a speed-up of five orders of
magnitude from the D-algorithm with 100% fault detection efficiency. As a result,
ATPG for combinational logic is no longer a problem; however, ATPG for sequential
logic is still difficult because, in order to propagate the effect of a fault to a primary
output so it can be observed and detected, a state sequence must be traversed with
the fault undertaken. For large sequential circuits, it is difficult to reach 100% fault
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coverage in reasonable computational time and cost unless DFT techniques are
adopted [Breuer 1987].

1.5.3 Fault Simulation

A fault simulator emulates the target faults in a circuit in order to determine which
faults are detected by a given set of test vectors. Because there are many faults
to emulate for fault detection analysis, fault simulation time is much greater than
that required for design verification. To accelerate the fault simulation process,
improved approaches have been developed in the following order. Parallel fault
simulation uses bit-parallelism of logical operations in a digital computer. Thus,
for a 32-bit machine, 31 faults are simulated simultaneously. Deductive fault
simulation deduces all signal values in each faulty circuit from the fault-free circuit
values and the circuit structure in a single pass of true-value simulation augmented
with the deductive procedure. Concurrent fault simulation is essentially an event-
driven simulation to emulate faults in a circuit in the most efficient way. Hardware
fault simulation accelerators based on parallel processing are also available to
provide a substantial speed-up over purely software-based fault simulators.

For analog and mixed-signal circuits, fault simulation is traditionally performed
at the transistor level using circuit simulators such as HSPICE. Unfortunately,
analog fault simulation is a very time-consuming task and, even for rather simple
circuits, a comprehensive fault simulation is normally not feasible. This problem
is further complicated by the fact that acceptable component variations must be
simulated along with the faults to be emulated, which requires many Monte Carlo
simulations to determine whether the fault will be detected. Macro models of circuit
components are used to decrease the long computation time. Fault simulation
approaches using high-level simulators can simulate analog circuit characteristics
based on differential equations but are usually avoided due to lack of adequate fault
models.

1.5.4 Digital Circuit Testing

The development of digital circuit testing began with the introduction of the stuck-
at fault model which was followed by the first bridging fault model, the transistor
fault model, and finally by delay fault models. Digital testing now typically uses
a combination of tests developed for different fault models because tests for any
given fault model cannot assure the detection of all defects. For example, current
testing practices by some manufacturers include stuck-at fault tests with 99% fault
coverage in conjunction with path-delay fault tests with greater than 90% fault
coverage.

Digital testing is also improved by monitoring the quiescent power supply
current (Ij,,,). Normally, the leakage current of CMOS circuits under a quiescent
state is very small and negligible. When a fault occurs, such as a transistor stuck-
short or a bridging fault, and causes a conducting path from power to ground, it
may draw an excessive supply current. I, testing became an accepted test method
for the IC industry in the 1980s; however, normal fault-free I, has become quite
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large for current, complex VLSI devices due to the collective leakage currents of
millions of transistors on a chip. This makes the detection of the additional Iy,
current due to a single faulty transistor or bridging fault difficult; hence, I, testing
is becoming ineffective.

A similar approach is transient power supply current (Iy;) testing. When a
CMOS circuit switches states, a momentary path is established between the sup-
ply lines V, and Vgg that results in a dynamic current Iypr. The Iy waveform
exhibits a spike every time the circuit switches with the magnitude and frequency
components of the waveform dependent on the switching activity; therefore, it is
possible to differentiate between fault-free and faulty circuits by observing either
the magnitude or the frequency spectrum of I, waveforms. Monitoring the Ippr
of a CMOS circuit may also provide additional diagnostic information about pos-
sible defects unmatched by I, and other test techniques [Min 1998]; however,
Ippr testing suffers many of the same problems as I, testing as the number of
transistors in VLSI devices continues to grow.

1.5.5 Analog and Mixed-Signal Circuit Testing

Analog circuits are used in various applications, such as telecommunications, multi-
media, and man-machine interfaces. Mixed-signal circuits include analog circuitry
(e.g., amplifiers, filters) and digital circuitry (e.g., data paths, control logic), as well
as digital-to-analog converters (DACs) and analog-to-digital converters (ADCs).
Due to the different types of circuitry involved, several different schemes to test
a mixed-signal chip are usually required. Test methods for analog circuitry and
converters have not achieved maturity comparable to that for digital circuitry. Tra-
ditionally, the analog circuitry is tested by explicit functional testing to directly
measure performance parameters, such as linearity, frequency response (phase and
gain), or signal-to-noise ratio. The measured parameters are compared against the
design specification tolerance ranges to determine if the device is faulty or opera-
tional within the specified limits. Long test application times and complicated test
equipment are often required, making functional testing very expensive. Recently,
defect-oriented test approaches based on fault models, similar to those used in
digital testing (such as shorts and opens), have been investigated for reducing the
cost for functional testing of the analog components and converters [Stroud 2002].

1.5.6 Design for Testability

Test engineers usually have to construct test vectors after the design is completed.
This invariably requires a substantial amount of time and effort that could be
avoided if testing is considered early in the design flow to make the design more
testable. As a result, integration of design and test, referred to as design for testa-
bility (DFT), was proposed in the 1970s.

To structurally test circuits, we need to control and observe logic values of internal
lines. Unfortunately, some nodes in sequential circuits can be very difficult to
control and observe; for example, activity on the most significant bit of an -
bit counter can only be observed after 2"~! clock cycles. Testability measures of
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controllability and observability were first defined in the 1970s [Goldstein 1979]
to help find those parts of a digital circuit that will be most difficult to test and
to assist in test pattern generation for fault detection. Many DFT techniques have
been proposed since that time [McCluskey 1986]. DFT techniques generally fall into
one of the following three categories: (1) ad hoc DFT techniques, (2) level-sensitive
scan design (LSSD) or scan design, or (3) built-in self-test (BIST).

Ad hoc methods were the first DFT techniques introduced in the 1970s. The goal
was to target only those portions of the circuit that would be difficult to test and
to add circuitry to improve the controllability or observability. Ad hoc techniques
typically use test point insertion to access internal nodes directly. An example of
a test point is a multiplexer inserted to control or observe an internal node, as
illustrated in Figure 1.12.

Level-sensitive scan design, also referred to as scan design, was the next, and
most important, DFT technique proposed [Eichelberger 1977]. LSSD is latch based.
In a flip-flop-based scan design, testability is improved by adding extra logic to
each flip-flop in the circuit to form a shift register, or scan chain, as illustrated in
Figure 1.13. During the scan mode, the scan chain is used to shift in (or scan in) a
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test vector to be applied to the combinational logic. During one clock cycle in the
system mode of operation, the test vector is applied to the combinational logic and
the output responses are clocked into the flip-flops. The scan chain is then used in
the scan mode to shift out (or scan out) the combinational logic output response to
the test vector while shifting in the next test vector to be applied. As a result, LSSD
reduces the problem of testing sequential logic to that of testing combinational
logic and thereby facilitates the use of ATPG developed for combinational logic.

Built-in self-test was proposed around 1980 [Bardell 1982] [Stroud 2002] to inte-
grate a test-pattern generator (TPG) and an output response analyzer (ORA) in
the VLSI device to perform testing internal to the IC, as illustrated in Figure 1.14.
Because the test circuitry resides with the CUT, BIST can be used at all levels of
testing, from wafer through system-level testing.

1.5.7 Board Testing

Like the VLSI fabrication process, PCB manufacturing is a capital-intensive process
with minimum human intervention. Once a high-volume batch has been started, the
process is totally unmanned. Potential problems that could cause a line stoppage
or poor yield are monitored throughout the process. In the 1970s and 1980s, PCBs
were tested by probing the backs of the boards with probes (also called nails) in a
bed-of-nails tester. The probes are positioned to contact various solder points on
the PCB in order to force signal values at the component pins and monitor the
output responses. Generally, a PCB tester is capable of performing both analog and
digital functional tests and is usually designed to be modular and flexible enough
to integrate different external instruments.

Two steps were traditionally taken before testing an assembled PCB. First, the
bare board was tested for all interconnections using a PCB tester, primarily tar-
geting shorts and opens. Next, the components to be assembled on the PCB were
tested. After assembly, the PCB was tested by using a PCB tester. In the modern
automated PCB production process, solder paste inspection, automated optical and
x-ray inspections, and in-circuit (bed-of-nails) testing are used for quality control.
With the advent of surface-mount devices on PCBs in the mid-1980s, problems
arose for PCB in-circuit testing, as the pins of the package did not go through the
board to guarantee contact sites on the bottom of the PCB. These problems were
overcome with the introduction of boundary scan.
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BIST Mode ORA ——-p

® FIGURE 1.14

Basic BIST architecture.
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1.5.8 Boundary Scan Testing

In the mid-1980s, the Joint Test Action Group (JTAG) proposed a boundary scan
standard, approved in 1990 as IEEE Standard 1149.1 [IEEE 1149.1-2001]. Bound-
ary scan, based on the basic idea of scan design, inserted logic to provide a scan
path through all I/O buffers of ICs to assist in testing the assembled PCB. A typical
boundary scan cell is illustrated in Figure 1.15 with regard to its application to a
bidirectional I/O buffer. The scan chain provides the ability to shift in test vectors
to be applied through the pad to the pins and interconnections on the PCB. The
output responses are captured at the input buffers on other devices on the PCB and
subsequently shifted out for fault detection. Thus, boundary scan provides access
to the various signal nodes on a PCB without the need for physical probes.

The test access port (TAP) provides access to the boundary scan chain through
a four-wire serial bus interface (summarized in Table 1.5) in conjunction with
instructions transmitted over the interface. In addition to testing the interconnec-
tions on the PCB, the boundary scan interface also provides access to DFT features,
such as LSSD or BIST, designed and implemented in the VLSI devices for board
and system-level testing. The boundary scan description language (BSDL) pro-
vides a mechanism with which IC manufacturers can describe testability features in
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Basic boundary scan cell applied to a bidirectional buffer.
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a chip [Parker 2001]. In 1999, another boundary scan standard, IEEE 1149.4, was
adopted for mixed-signal systems; it defines boundary scan cells as well as a TAP
for the analog portion of the device [IEEE 1149.4-1999] [Mourad 2000]. In 2003,
an extended boundary scan standard for the I/O protocol of high-speed networks,
namely 1149.6, was approved [IEEE 1149.6-2003].

System-on-chip implementations face test challenges in addition to those of nor-
mal VLSI devices. SOCs incorporate embedded cores that may be difficult to access
during testing. The IEEE P1500 working group was approved in 1997 to develop a
scalable wrapper architecture and access mechanism similar to boundary scan for
enabling test access to embedded cores and the associated interconnect between
embedded cores. This proposed P1500 test method, approved as an IEEE 1500
standard in 2005 [TEEE 1500-2005], is independent of the underlying functionality
of the SOC or its individual embedded cores and creates the necessary testability
requirements for detection and diagnosis of faults for debug and yield enhancement.

1.6 CONCLUDING REMARKS

This chapter provides an overview of VLSI testing as an area of both theoretical
and great practical significance. The importance and challenges of VLSI testing at
different abstraction levels were discussed along with a brief historical review of
test technology development. New and continuing testing challenges, along with the
critical mind of the test community, drive creative advances in test technology and
motivate further developments for nanometer technology. Why do we need VLSI
testing? How difficult is VLSI testing? What are the fundamental concepts and
techniques for VLSI testing? Although many of these issues were briefly reviewed
in this chapter, a more detailed discussion of these questions can be found in the
following chapters of this book.

1.7 EXERCISES

1.1 (Stuck-At Fault Models) Consider the combinational logic circuit in
Figure 1.16. How many possible single stuck-at faults does this circuit have?
How many possible multiple stuck-at faults does this circuit have? How many
collapsed single stuck-at faults does this circuit have?

= FIGURE 1.16

Circuit for Problem 1.1.
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= FIGURE 1.17

Circuit for Problem 1.4.

1.2 (Bridging Fault Models) Show an example where a combinational logic
circuit will become a sequential circuit in the presence of a bridging fault.

1.3 (Automatic Test-Pattern Generation) Generate a minimum set of test vec-
tors to completely test an n-input NAND gate under the single stuck-at fault
model. How many test vectors are needed?

1.4 (Automatic Test-Pattern Generation) Generate a minimum set of test vec-
tors to detect all single stuck-at faults for a cascade of (n —1) exclusive-
OR gates for an n-bit parity checker, as shown in Figure 1.17, where each
exclusive-OR gate is implemented by elementary logic gates (AND, OR, NAND,
NOR, NOT). How many test vectors are needed?

1.5 (Mean Time between Failures) The number of failures in 10° hours is a unit
(abbreviated FITS) that is often used in reliability calculations. Calculate the
MTBEF for a system with 500 components where each component has a failure
rate of 1000 FITS.

1.6 (Mean Time to Repair) On average, how long would it take to repair a system
each year if the availability of the system is 99.999%?

1.7 (Defect Level) What percentage of all parts shipped will be defective if the
yield is 50% and the fault coverage is 90% for the set of test vectors used to
test the parts?
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ABOUT THIS CHAPTER

This chapter discusses design for testability (DFT) techniques for testing modern
digital circuits. These DFT techniques are required in order to improve the quality
and reduce the test cost of the digital circuit, while at the same time simplifying the
test, debug and diagnose tasks. The purpose of this chapter is to provide readers
with the knowledge to judge whether a design is implemented in a test-friendly
manner and to recommend changes in order to improve the testability of the design
for achieving the above-mentioned goals. More specifically, this chapter will allow
readers to be able to identify and fix scan design rule violations and understand the
basics for successfully converting a design into a scan design.

In this chapter, we first cover the basic DFT concepts and methods for performing
testability analysis. Next, following a brief yet comprehensive summary of ad hoc
DFT techniques, scan design, the most widely used structured DFT methodology,
is discussed, including popular scan cell designs, scan architectures, scan design
rules, scan design flow, and special-purpose scan designs. Finally, advanced DFT
techniques for use at the register-transfer level (RTL) are presented in order to
further reduce DFT design iterations and test development time.

2.1 INTRODUCTION

During the early stages of integrated circuit (IC) production history, design and test
were regarded as separate functions, performed by separate and unrelated groups
of engineers. During these early years, a design engineer’s job was to implement the
required functionality based on design specifications, without giving any thought
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to how the manufactured device was to be tested. Once the functionality was imple-
mented, the design information was transferred to test engineers. A test engineer’s
job was to determine how to efficiently test each manufactured device within a
reasonable amount of time, in order to screen out the parts that may contain man-
ufacturing defects and ship all defect-free devices to customers. The final quality of
the test was determined by keeping track of the number of defective parts shipped to
the customers, based on customer returns. This product quality, measured in terms
of defective parts per million (PPM) shipped, was a final test score for quantifying
the effectiveness of the developed test.

While this approach worked well for small-scale integrated circuits that mainly
consisted of combinational logic or simple finite-state machines, it was unable to
keep up with the circuit complexity as designs moved from small-scale integra-
tion (SSI) to very-large-scale integration (VLSI). A common approach to test these
VLSI devices during the 1980s relied heavily on fault simulation to measure the
fault coverage of the supplied functional patterns. Functional patterns were devel-
oped to navigate through the long sequential depths of a design, with the goal of
exercising all internal states and detecting all possible manufacturing defects. A
fault simulation or fault grading tool was used to quantify the effectiveness of the
functional patterns. If the supplied functional patterns did not reach the target fault
coverage goal, additional functional patterns were further added. Unfortunately,
this approach typically failed to improve the circuit’s fault coverage beyond 80%,
and the quality of the shipped products suffered.

Gradually, it became clear that designing devices without paying much attention
to test resulted in increased test cost and decreased test quality. Some designs that
were otherwise best in class with regard to functionality and performance failed
commercially due to prohibitively high test cost or poor product quality. These
problems have since led to the development and deployment of DFT engineering in
the industry.

The first challenge facing DFT engineers was to find simpler ways of exercising
all internal states of a design and reaching the target fault coverage goal. Various
testability measures and ad hoc testability enhancement methods were proposed
and used in the 1970s and 1980s to serve this purpose. These methods were mainly
used to aid in the circuit’s testability or to increase the circuit’s controllability and
observability [McCluskey 1986] [Abramovici 1994]. While attempts to use these
methods have substantially improved the testability of a design and eased sequential
automatic test pattern generation (ATPG), their end results at reaching the target
fault coverage goal were far from being satisfactory; it was still quite difficult to
reach more than 90% fault coverage for large designs. This was mostly due to the
fact that, even with these testability aids, deriving functional patterns by hand or
generating test patterns for a sequential circuit is a much more difficult problem
than generating test patterns for a combinational circuit [Fujiwara 1982] [Bushnell
2000] [Jha 2002].

For combinational circuits, many innovative ATPG algorithms have been devel-
oped for automatically generating test patterns within a reasonable amount of
time. Automatically generating test patterns for sequential circuits met with limited
success, due to the existence of numerous internal states that are difficult to set
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and check from external pins. Difficulties in controlling and observing the internal
states of sequential circuits led to the adoption of structured DFT approaches in
which direct external access is provided for storage elements. These reconfigured
storage elements with direct external access are commonly referred to as scan cells.
Once the capability of controlling and observing the internal states of a design is
added, the problem of testing the sequential circuit is transformed into a problem
of testing the combinational logic, for which many solutions already existed.

Scan design is currently the most popular structured DFT approach. It is imple-
mented by connecting selected storage elements of a design into multiple shift
registers, called scan chains, to provide them with external access. Scan design
accomplishes this task by replacing all selected storage elements with scan cells,
each having one additional scan input (SI) port and one shared/additional scan
output (SO) port. By connecting the SO port of one scan cell to the SI port of the
next scan cell, one or more scan chains are created.

Since the 1970s, numerous scan cell designs and scan architectures have been
proposed [Fujiwara 1985] [McCluskey 1986]. A design where all storage elements
are selected for scan insertion is called a full-scan design. A design where almost
all (e.g., more than 98%) storage elements are selected is called an almost full-
scan design. A design where some storage elements are selected and sequential
ATPG is applied is called a partial-scan design. A partial-scan design where storage
elements are selected in such a way as to break all sequential feedback loops [Cheng
1990] and to which combinational ATPG can be applied is further classified as
a pipelined, feed-forward, or balanced partial-scan design. As silicon prices
have continued to drop since the mid-1990s with the advent of deep submicron
technology, the dominant scan architecture has shifted from partial-scan design to
full-scan design.

In order for a scan design to achieve the desired PPM goal, specific circuit struc-
tures and design practices that can affect fault coverage must be identified and
fixed. This requires compiling a set of scan design rules that must be adhered
to. Hence, a new role of DFT engineer emerged, with responsibilities including
identifying and fixing scan design rule violations in the design, inserting or synthe-
sizing scan chains into the design, generating test patterns for the scan design, and,
finally, converting the test patterns to test programs for test engineers to perform
manufacturing testing on automatic test equipment (ATE). Since then, most of
these DFT tasks have been automated.

In addition to being the dominant DFT architecture used for detecting manufac-
turing defects, scan design has become the basis of more advanced DFT techniques,
such as logic built-in self-test (BIST) [Nadeau-Dostie 2000] [Stroud 2002] and test
compression. Furthermore, as designs continue to move towards the nanometer
scale, scan design is being utilized as a design feature, with uses varying from
debug, diagnosis, and failure analysis to special applications, such as reliability
enhancement against soft errors [Mitra 2005]. A few of these special-purpose
scan designs are included in this chapter for completeness.

Recently, design for testability has started to migrate from the gate level to
the register-transfer level (RTL). The motivation for this migration is to allow
additional DFT features, such as logic BIST and test compression, to be integrated
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at the RTL, thereby reducing test development time and creating reusable and
testable RTL cores. This further allows the integrated DFT design to go through
synthesis-based optimization to reduce performance and area overhead.

2.2 TESTABILITY ANALYSIS

Testability is a relative measure of the effort or cost of testing a logic circuit.
In general, it is based on the assumption that only primary inputs and primary
outputs can be directly controlled and observed, respectively. Testability reflects
the effort required to perform the main test operations of controlling internal
signals from primary inputs and observing internal signals at primary outputs.
Testability analysis refers to the process of assessing the testability of a logic
circuit by calculating a set of numerical measures for each signal in the circuit.

One important application of testability analysis is to assist in the decision-
making process during test generation. For example, if during test generation it
is determined that the output of a certain AND gate must be set to 0, testability
analysis can help decide which AND gate input is the easiest to set to 0. Another
application is to identify areas of poor testability to guide testability enhancement,
such as test point insertion, for improving the testability of the design. For this
purpose, testability analysis is performed at various design stages so testability
problems can be identified and fixed as early as possible.

Since the 1970s, many testability analysis techniques have been proposed
[Rutman 1972] [Stephenson 1976] [Breuer 1978] [Grason 1979]. The Sandia Con-
trollability/Observability Analysis Program (SCOAP) [Goldstein 1979] [Goldstein
1980] was the first topology-based program that popularized testability analysis
applications. Enhancements based on SCOAP have also been developed and used
to aid in test point selection [Wang 1984] [Wang 1985]. These methods perform
testability analysis by calculating the controllability and observability of each sig-
nal line, where controllability reflects the difficulty of setting a signal line to a
required logic value from primary inputs and observability reflects the difficulty of
propagating the logic value of the signal line to primary outputs.

Traditionally, gate-level topological information of a circuit is used for testability
analysis. Depending on the target application, deterministic or random testability
measures are calculated. In general, topology-based testability analysis, such as
SCOAP or probability-based testability analysis, is computationally efficient but
can produce inaccurate results for circuits containing many reconvergent fanouts.
Simulation-based testability analysis, on the other hand, can generate more accu-
rate results by simulating the circuit behavior using deterministic, random, or
pseudo-random test patterns but may require a long simulation time.

In this section, we first describe the method for performing SCOAP testability
analysis. Next, probability-based testability analysis and simulation-based testa-
bility analysis are discussed. Finally, because the capability to perform testability
analysis at the RTL is becoming increasingly important, we discuss how RTL testa-
bility analysis is performed.



Design for Testability 41

2.2.1 SCOAP Testability Analysis

The SCOAP testability analysis program [Goldstein 1979] [Goldstein 1980] calcu-
lates six numerical values for each signal s in a logic circuit:

®  CCO(s)—combinational 0-controllability of s
B CCl(s)—combinational 1-controllability of s
B CO(s)—combinational observability of s
B SCO(s)—sequential 0-controllability of s
B SCI(s)—sequential 1-controllability of s

®  SO(s)—sequential observability of s

Roughly speaking, the three combinational testability measures (CCO, CC1, and
CO) are related to the number of signals that must be manipulated in order to
control or observe s from primary inputs or at primary outputs, whereas the three
sequential testability measures (SC0, SC1, and SO) are related to the number of
clock cycles required to control or observe s from primary inputs or at primary
outputs [Bushnell 2000]. The values of controllability measures range between 1 and
infinite, while the values of observability measures range between 0 and infinite.
As a boundary condition, the CCO and CC1 values of a primary input are set to 1,
the SCO and SC1 values of a primary input are set to 0, and the CO and SO values
of a primary output are set to 0.

2.2.1.1 Combinational Controllability and Observability Calculation

The first step in SCOAP is to calculate the combinational controllability measures
of all signals. This calculation is performed from primary inputs toward primary
outputs in a breadth-first manner. More specifically, the circuit is levelized from
primary inputs to primary outputs in order to assign a level order for each gate.
The output controllability of each gate is then calculated in level order after the
controllability measures of all of its inputs have been calculated. The rules for
combinational controllability calculation are summarized in Table 2.1, where a 1 is
added to each rule to indicate that a signal passes through one more level of logic
gate. From this table, we can see that CCO(s) >1 and CC1(s) >1 for any signal s. A
larger CCO(s) or CC1(s) value implies that it is more difficult to control s to 0 or 1
from primary inputs.

Once the combinational controllability measures of all signals are calculated,
the combinational observability of each signal can be calculated. This calculation
is also performed in a breadth-first manner while moving from primary outputs
toward primary inputs. The rules for combinational observability calculation are
summarized in Table 2.2, where a 1 is added to each rule to indicate that a signal
passes through one more level of logic gate. From this table, we can see that
CO(s) > 0 for any signal s. A larger CO(s) value implies that it is more difficult to
observe s at any primary output.
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TABLE 2.1 m SCOAP Combinational Controllability Calculation Rules

0-Controllability (Primary Input, 1-Controllability (Primary Input,
Output, Branch) Output, Branch)
Primary Input 1 1
AND min {input O-controllabilities} + 1 > (input 1-controllabilities} + 1
OR > (input O-controllabilities) + 1 min {input 1-controllabilities} + 1
NOT Input 1-controllability + 1 Input O-controllability + 1
NAND > (input 1-controllabilities) + 1 min {input O-controllabilities} + 1
NOR min {input 1-controllabilities} + 1 > (input O-controllabilities) + 1
BUFFER Input O-controllability + 1 Input 1-controllability + 1
XOR min {CC1(a) + CC1(b), CCO(a) + CCO(L)} + 1 | min {CC1(a)+ CCO(b),CCO(a)+CC1(b)}+1
XNOR min {CC1(a) + CCO(b), CCO(a) + CCL(b)} + 1 | min {CC1(a)+CC1(b),CCO(a)+CCO(b)}+ 1
Branch Stem O-controllability Stem 1-controllability

Note: a and b are inputs of an XOR or XNOR gate.

TABLE 2.2 m SCOAP Combinational Observability Calculation Rules

Observability (Primary Output, Input, Stem)

Primary Output 0

AND/NAND 3" (output observability, 1-controllabilities of other inputs) + 1
OR/NOR >~ (output observability, O-controllabilities of other inputs) + 1
NOT/BUFFER Output observability + 1

XOR/XNOR a: Y (output observability, min {CCO(b),CC1(b)})+1

b: Y (output observability, min {CCO(a), CC1(a)}) +1

Stem min {branch observabilities}

Note: aand b are inputs of an XOR or XNOR gate.

Figure 2.1 shows the combinational controllability and observability measures of
a full-adder. The three-value tuple v,/v,/v; on each signal line represents the signal’s
0-controllability (v,), 1-controllability (v,), and observability (v;). The boundary
condition is set by initializing the CCO and CC1 values of the primary inputs A,
B, and C;, to 1 and the CO values of the primary outputs Sum and C,,, to 0. By
applying the rules given in Tables 2.1 and 2.2 and starting with the given bound-
ary condition, one can first calculate all combinational controllability measures
forward and then calculate all combinational observability measures backward in
level order.
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SCOAP full-adder example.

2.2.1.2 Sequential Controllability and Observability Calculation

Sequential controllability and observability measures are calculated in a similar
manner as combinational measures, except that a 1 is not added as we move from
one level of logic gate to another; rather, a 1 is added when a signal passes through
a storage element. The difference is illustrated using the sequential circuit example
shown in Figure 2.2, which consists of an AND gate and a positive-edge-triggered D
flip-flop. The D flip-flop includes an active-high asynchronous reset pin r. SCOAP
measures of a D flip-flop with a synchronous, as opposed to asynchronous, reset
are shown in [Bushnell 2000].

First, we calculate the combinational and sequential controllability measures of
all signals. In order to control signal d to 0, either input a or b must be set to
0. In order to control d to 1, both inputs a and b must be set to 1. Hence, the
combinational and sequential controllability measures of signal d are:

CCO(d) = min {CCO(a), CCO(b)} + 1
SCO(d) = min {SCO(a), SCO(b)}
CC1(d) = CC1(a) +CC1(b) +1
SC1(d) = SC1(a) +SC1(b)

2~ Fo of—q

m FIGURE 2.2

SCOAP sequential circuit example.
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In order to control the data output g of the D flip-flop to 0, the data input d
and the reset signal r can be set to 0 while applying a rising clock edge (a 0-to-1
transition) to the clock CK. Alternatively, this can be accomplished by setting » to
1 while holding CK at 0. Because a clock pulse is not applied to CK, a 1 is not
added to the sequential controllability calculation in the second case; therefore, the
combinational and sequential 0-controllability measures of g are:

CCO(q) = min {CCO(d) + CCO(CK) + CC1(CK) + CCO(r), CC1(r) + CCO(CK)}
SCO0(g) = min {SCO(d) + SCO(CK) + SC1(CK) + SCO(r) + 1, SC1(r) + SCO(CK)}
Here, CC0(g) measures how many signals in the circuit must be set to control g to
0, whereas SC0(g) measures how many flip-flops in the circuit must be clocked to
set g to 0. The only way to control the data output g of the D flip-flop to 1 is to set
the data input d to 1 and the reset signal » to 0 while applying a rising clock edge

to the clock CK. Hence,
CCl1(g) = CC1(d) + CCO(CK) + CC1(CK) + CCO(r)
SC1(g) = SC1(d) + SCO(CK) + SC1(CK) 4+ SCO(r) + 1
Next, we calculate the combinational and sequential observability measures of

all signals. The data input d can be observed at g by holding the reset signal » at 0
and applying a rising clock edge to CK. Hence,

CO(d) = CO(g) + CCO(CK) + CC1(CK) + CCO(r)
SO(d) = SO(g) + SCO(CK) + SC1(CK) +SCO(r) + 1
The asynchronous reset signal » can be observed by first setting ¢ to 1 and

then holding CK at the inactive state 0. Again, a 1 is not added to the sequential
controllability calculation because a clock pulse is not applied to CK:

CO(r) = CO(q) + CC1(gq) + CCO(CK)
SO(r) = SO(g) +SC1(g) + SCO(CK)
There are two ways to indirectly observe the clock signal CK at g: (1) setg to 1, r to
0, and d to 0 and apply a rising clock edge at CK; or (2) set both ¢ and r to 0, set d
to 1, and apply a rising clock edge at CK. Hence,
CO(CK) = CO(g) + CCO(CK) + CC1(CK) + CCO(r)
+min {CCO(d) + CC1(g), CC1(d) +CCO(q)}
SO(CK) = SO(q) + SCO(CK) + SC1(CK) + SCO(r)
+min {SCO(d)+SC1(q), SC1(d) +SCO(g)} + 1
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To observe an input of the AND gate at d requires setting the other input to 1;
therefore, the combinational and sequential observability measures for both inputs
a and b are:

CO(a) = CO(d)+CC1(b) +1
SO(a) = SO(d) + SC1(b)
CO(b) = CO(d)+CCl(a)+1
SO(b) = SO(d) + SC1(a)

It is important to note that controllability and observability measures calculated
using SCOAP are heuristics and only approximate the actual testability of a logic
circuit. When scan design is used, testability analysis can assume that all scan
cells are directly controllable and observable. It was also shown in [Agrawal 1982]
that SCOAP may overestimate testability measures for circuits containing many
reconvergent fanouts; however, by being able to perform testability analysis in
O(n) computational complexity for »n signals in a circuit, SCOAP provides a quick
estimate of the circuit’s testability that can be used to guide testability enhancement
and test generation.

2.2.2 Probabhility-Based Testability Analysis

Topology-based testability analysis techniques, such as SCOAP, have been found to
be extremely helpful in test generation, which is the main topic of Chapter 4. These
testability measures are able to analyze the deterministic testability of the logic
circuit in advance. On the other hand, in logic built-in self-test (BIST), which is
the main topic of Chapter 5, random or pseudo-random test patterns are generated
without specifically performing deterministic test pattern generation on any signal
line. In this case, topology-based testability measures using signal probability to
analyze the random testability of the circuit can be used [Parker 1975] [Savir
1984] [Seth 1985] [Jain 1985]. These measures are often referred to as probability-
based testability measures or probability-based testability analysis techniques.
For example, given a random input pattern, one can calculate three measures for
each signal s in a combinational circuit as follows:

B CO(s)—probability-based 0-controllability of s
B Cl(s)—probability-based 1-controllability of s
B O(s)—probability-based observability of s

Here, CO(s) and Cl(s) are the probability of controlling signal s to 0 and 1 from
primary inputs, respectively. O(s) is the probability of observing signal s at primary
outputs. These three probabilities range between 0 and 1. As a boundary condition,
the CO and C1 probabilities of a primary input are typically set to 0.5, and the
O probability of a primary output is set to 1. For each signal s in the circuit,
CO(s)+Cl(s) =1.
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Many methods have been developed to calculate the probability-based testability
measures. A simple method is given below, whose basic procedure is similar to the
one used for calculating combinational testability measures in SCOAP except that
different calculation rules are used. The rules for probability-based controllability
and observability calculation are summarized in Tables 2.3 and 2.4, respectively.
In Table 2.3, p, is the initial 0-controllability chosen for a primary input, where
0<py<1.

Compared to SCOAP testability measures, where non-negative integers are used,
probability-based testability measures range between 0 and 1. The smaller a
probability-based testability measure of a signal, the more difficult it is to control or
observe the signal. Figure 2.3 illustrates the difference between SCOAP testability

TABLE 2.3 m Probability-Based Controllability Calculation Rules

0-Controllability (Primary Input, | 1-Controllability (Primary Input,

Output, Branch) Output, Branch)
Primary Input Po pi=1-p,
AND 1 — (output 1-controllability) [T (input 1-controllabilities)
OR [1 (input O-controllabilities) 1 — (output O-controllability)
NOT Input 1-controllability Input O-controllability
NAND [T (input 1-controllabilities) 1 — (output O-controllability)
NOR 1 — (output 1-controllability) [1 (input O-controllabilities)
BUFFER Input O-controllability Input 1-controllability
XOR 1 — 1-controllability > (Cl(a) x CO(b),CO(a) x C1(b))
XNOR 1 — 1-controllability > (CO(a) x CO(b), Cl(a) x C1(b))
Branch Stem O-controllability Stem 1-controllability

Note: a and b are inputs of an XOR or XNOR gate.

TABLE 2.4 m Probability-Based Observability Calculation Rules

Observability (Primary Output, Input, Stem)

Primary Output 1

AND/NAND [T (output observability, 1-controllabilities of other inputs)

OR/NOR [T (output observability, O-controllabilities of other inputs)

NOT/BUFFER Output observability

XOR/XNOR a: [] (output observability, max {O-controllability of b, 1-controllability of b})

b: [1 (output observability, max {O-controllability of a, 1-controllability of a})

Stem max {branch observabilities}

Note: a and b are inputs of an XOR or XNOR gate.
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Comparison of SCOAP and probability-based testability measures: (a) SCOAP combinational measures,
and (b) probability-based measures.

measures and probability-based testability measures of a three-input AND gate. The
three-value tuple v,/v,/v; of each signal line represents the signal’s 0-controllability
(v,), 1-controllability (v,), and observability (v;).

Signals with poor probability-based testability measures tend to be difficult to
test with random or pseudo-random test patterns. The faults on these signal lines
are often referred to as random-pattern resistant (RP-resistant) [Savir 1984]. That
is, either the probability of these signals randomly receiving a 0 or 1 from primary
inputs or the probability of observing these signals at primary outputs is low,
assuming that all primary inputs have the equal probability of being set to 0 or 1
and are independent from each other.

The existence of such RP-resistant faults is the main reason why fault coverage
using random or pseudo-random test patterns is low compared to using determin-
istic test patterns. In applications such as logic BIST, in order to solve this low fault
coverage problem, test points are often inserted in the circuit to enhance the cir-
cuit’s random testability. A few commonly used test point insertion techniques are
discussed in Section 2.3. Interested readers can find more information in Chapter 5.

2.2.3 Simulation-Based Testability Analysis

In the calculation of SCOAP and probability-based testability measures as described
above, only the topological information of a logic circuit is explicitly explored.
These topology-based methods are static, in the sense that they do not use input test
patterns for testability analysis. Their controllability and observability measures can
be calculated in linear time, thus making them very attractive for applications that
require fast testability analysis, such as test generation and logic BIST. However, the
efficiency of these methods is achieved at the cost of reduced accuracy, especially
for circuits that contain many reconvergent fanouts [Agrawal 1982].

As an alternative or supplement to static or topology-based testability analysis,
dynamic or simulation-based methods that use input test patterns for testability
analysis or testability enhancement can be performed through statistical sam-
pling. Logic simulation and fault simulation techniques can be employed. Logic
simulation and fault simulation are both covered in Chapter 3.

In statistical sampling, a sample set of input test patterns are selected that are
either generated randomly or derived from a given pattern set, and logic simulation
is conducted to collect the responses of all or part of signal lines of interest. The
commonly collected responses are the number of occurrences of 0’s, 1’s, 0-to-1
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transitions, and 1-to-0 transitions, which are then used to statistically profile the
testability of a logic circuit. These data are then analyzed to find locations of poor
testability. If a signal line exhibits only a few transitions or no transitions for the
sample input patterns, it might be an indication that the signal likely has poor
controllability.

In addition to logic simulation, fault simulation has also been used to enhance
the testability of a logic circuit using random or pseudo-random test patterns.
For example, a random resistant fault analysis (RRFA) method has been suc-
cessfully applied to a high-performance microprocessor to improve the circuit’s
random testability in logic BIST [Rizzolo 2001]. This method is based on statis-
tical data collected during fault simulation for a small number of random test
patterns. Controllability and observability measures of each signal in the circuit are
calculated using the probability models developed in the statistical fault analysis
(STAFAN) algorithm [Jain 1985], which is described in Section 3.4.8 (STAFAN is
the first method able to give reasonably accurate estimates of fault coverage in
combinational circuits purely using input test patterns and without running fault
simulation). With these data, RRFA identifies signals that are difficult to control
or observe, as well as signals that are statistically correlated. Based on the analysis
results, RRFA then recommends test points to be added to the circuit to improve
the circuit’s random testability.

Because it can take a long simulation time to run through all input test patterns,
these simulation-based methods are in general used to guide testability enhance-
ment in test generation or logic BIST when it is necessary to meet a very high
fault coverage goal. This approach is crucial for life-critical and mission-critical
applications, such as in the healthcare and defense/aerospace industries.

2.2.4 RTL Testability Analysis

The testability analysis methods discussed earlier are mostly used for logic circuits
described at the gate level. Although they can be used to ease test generation and
guide testability enhancement, testability enhancement at the gate level can be
costly in terms of area overhead and possible performance degradation. In addition,
it may require many DFT iterations and increase test development time. In order
to address these problems, many RTL testability analysis methods have been
proposed [Stephenson 1976] [Lee 1992] [Boubezari 1999].

The RTL testability analysis method described in [Lee 1992] can be used to
improve data path testability. This method begins by building a structure graph
to represent the data transfer within an RTL circuit, where each vertex represents
a register, and each directed edge from vertex v; to vertex v; represents a functional
block from register v; to register v;. The maximum level in a structure graph,
referred to as the sequential depth, can be used to reflect the difficulty of testing
the RTL circuit. This approach ignores all the details of the functional block.

The RTL testability analysis method discussed in [Boubezari 1999] can be used
to improve the random-pattern testability of a scan-based logic BIST circuit, in
which the outputs and inputs of all storage elements are treated as primary inputs
and outputs, respectively. A directed acyclic graph (DAG) is constructed for each
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functional block in order to represent the flow of information and data dependen-
cies. Each internal node of a DAG corresponds to a high-level operation (such as
an arithmetic, relational, data transfer, and logical operation) of multiple bits, and
each edge represents a signal, which can be composed of multiple bits. This mod-
eling method keeps useful high-level information about a functional block while
ignoring the details of the gate-level implementation. This information is then used
to compute the 0-controllability, 1-controllability, and observability of each bit in
a signal line.

As an example, consider the n-bit ripple-carry adder shown in Figure 2.4, which
consists of n 1-bit full-adders. By considering the minterms leading to a 1 on the
respective output, the probability-based 1-controllability measures of s; and ¢,.,,
denoted by Cl(s;) and Cl(c,,,), respectively, are calculated as follows [Boubezari
1999]:

Cl(s;) =a+Cl(c;,) —2 x (a x Cl(c;))
Cl(c;y1) = a x Cl(c;) + Cl(a;) x C1(b))

where
a=Cl(a;)+Cl(b;) —2 x Cl(aq;) x C1(b;)

Here, « is the probability that (a,®b;) = 1 and, consequently, C1(s;) is the probability
that (a;®b, ®c;) = 1. By applying the above formulas from the leftmost full-adder
toward the rightmost full-adder in the #-bit ripple-carry adder, the 1-controllability
of each output is obtained. This calculation can be completed in linear time in terms
of the number of inputs. The probability-based 0-controllability of each output [,
denoted by CO({), in the n-bit ripple-carry adder is 1 —C1(J).

Next, we consider the probability-based observability of an input / on an output
s;, denoted by O(, s;), in the n-bit ripple-carry adder. O(, s;) is defined as the
probability that a signal change on [ will result in a signal change on s;. According
to the Boolean function of a 1-bit adder, the change on any input q;, b;, or ¢; is
always observable at s;. Hence, we have:

O(a; s;) =0(b,, s;) = O(c;, s;) = O(s;)
ag b
Co C1
So

® FIGURE 2.4

Ripple-carry adder composed of n full-adders.
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where i = 0, 1, ..., n—1. On the other hand, the probability-based observability
of an input [/ at stage i on an output s,—O(, s,), where k > i—depends on the
propagation of the carry output from stage i to the output s,. This calculation is
left as a problem at the end of this chapter.

In general, RTL testability analysis can sometimes lead to more accurate results
than gate-level testability analysis. The reason is that the number of reconvergent
fanouts in an RTL model is usually much less than that in a gate-level model. RTL
testability analysis is also more time efficient than gate-level testability analysis
because an RTL model is much simpler than an equivalent gate-level model; how-
ever, the practical application of RTL testability analysis for testability enhancement
in complex RTL designs remains a challenging research topic.

2.3 DESIGN FOR TESTABILITY BASICS

As discussed in the previous section, the testability of combinational logic decreases
as the level of the combinational logic increases. A more serious issue is that good
testability for sequential circuits is difficult to achieve. Because many internal states
exist, setting a sequential circuit to a required internal state can require a very
large number of input events. Furthermore, identifying the exact internal state of
a sequential circuit from the primary outputs might require a very long checking
experiment. Hence, a more structured approach for testing designs that contain
a large amount of sequential logic is required as part of a methodical design for
testability (DFT) approach [Williams 1983].

Initially, many ad hoc techniques were proposed for improving testability. These
techniques relied on making local modifications to a circuit in a manner that was
considered to result in testability improvement. While ad hoc DFT techniques do
result in some tangible testability improvement, their effects are local and not
systematic. Furthermore, these techniques are not methodical, in the sense that they
have to be repeated differently on new designs, often with unpredictable results.
Due to the ad hoc nature, it is also difficult to predict how long it would take to
implement the required DFT features.

The structured approach for testability improvement was introduced to allow
DFT engineers to follow a methodical process for improving the testability of a
design. A structured DFT technique can be easily incorporated and budgeted for as
part of the design flow and can yield the desired results. Furthermore, structured
DFT techniques are much easier to automate. To date, electronic design automa-
tion (EDA) vendors have been able to provide sophisticated DFT tools to simplify
and speed up DFT tasks. Scan design, which is the main topic in this chapter, has
been found to be one of the most effective structured DFT methodologies for testa-
bility improvement. Not only can scan design achieve the targeted fault coverage
goal, but it also makes DFT implementation in scan design manageable. In the
following two subsections, we briefly introduce a few typical ad hoc DFT tech-
niques, followed by a detailed description of the structured DFT approach, focusing
specifically on scan design.
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2.3.1 Ad Hoc Approach

The ad hoc approach involves using a set of design practice and modification
guidelines for testability improvement. Ad hoc DFT techniques typically involve
applying good design practices learned through experience or replacing a bad design
practice with a good one. Table 2.5 lists some typical ad hoc techniques. In this
subsection, we describe test point insertion, which is one of the most widely used
ad hoc techniques. A few other techniques are further described in Section 2.6.
Additional ad hoc techniques can be found in [Abramovici 1994].

TABLE 2.5 m Typical Ad hoc DFT Techniques

Al Insert test points

A2 Avoid asynchronous set/reset for storage elements

A3 Avoid combinational feedback loops

A4 Avoid redundant logic

A5 Avoid asynchronous logic

A6 Partition a large circuit into small blocks

2.3.1.1 Test Point Insertion

Test point insertion (TPI) is a commonly used ad hoc DFT technique for improv-
ing the controllability and observability of internal nodes. Testability analysis is
typically used to identify the internal nodes where test points should be inserted,
in the form of control or observation points.

Figure 2.5 shows an example of observation point insertion for a logic circuit
with three low-observability nodes. OP, shows the structure of an observation point
that is composed of a multiplexer (MUX) and a D flip-flop. A low-observability node
is connected to the 0 port of the MUX in an observation point, and all observation
points are serially connected into an observation shift register using the 1 port of
the MUX. An SE signal is used for MUX port selection. When SE is set to 0 and
the clock CK is applied, the logic values of the low-observability nodes are captured
into the D flip-flops. When SE is set to 1, the D flip-flops within OP,, OP,, and
OP, operate as a shift register, allowing us to observe the captured logic values
through OP_output during sequential clock cycles. As a result, the observability of
the circuit nodes is greatly improved.

Figure 2.6 shows an example of control point insertion for a logic circuit with
three low-controllability nodes. CP, shows the structure of a control point (CP)
that is composed of a MUX and a D flip-flop. The original connection at a low-
controllability node is cut, and a MUX is inserted between the source and destina-
tion ends. During normal operation, the test mode (TM) is set to 0 so that the value
from the source end drives the destination end through the 0 port of the MUX.
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Observation point insertion.
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Control point insertion.

During test, TM is set to 1 so that the value from the D flip-flop drives the destina-
tion end through the 1 port of the MUX. The D flip-flops in OP,, OP,, and OP; are
designed to form a shift register so the required values can be shifted into the flip-
flops using CP_input and used to control the destination ends of low-controllability
nodes. As a result, the controllability of the circuit nodes is dramatically improved.
This, however, results in additional delay to the logic path. Hence, care must be
taken not to insert control points on a critical path. Furthermore, it is preferable
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to add a scan point, which is a combination of a control point and an observation
point, instead of a control point, as this allows us to observe the source end as well.

Some other test point designs are described in [Abramovici 1994] and [Nadeau-
Dostie 2000]. In addition, test points can be shared among multiple internal nodes;
for example, a network of XOR gates can be used to merge a few low-observability
nodes together to share one observation point. This can potentially reduce the area
overhead, although in some cases it might increase routing difficulty.

2.3.2 Structured Approach

The structured DFT approach attempts to improve the overall testability of a circuit
with a test-oriented design methodology [Williams 1983] [McCluskey 1986]. This
approach is methodical and systematic with much more predictable results.

Scan design, the most widely used structured DFT methodology, attempts to
improve testability of a circuit by improving the controllability and observability of
storage elements in a sequential design. Typically, this is accomplished by convert-
ing the sequential design into a scan design with three modes of operation: normal
mode, shift mode, and capture mode. Circuit operations with associated clock
cycles conducted in these three modes are referred to as normal operation, shift
operation, and capture operation, respectively.

In normal mode, all test signals are turned off, and the scan design operates in
the functional configuration. In both shift and capture modes, a test mode signal
TM is often used to turn on all test-related fixes that are necessary to simplify the
test, debug, and diagnosis tasks, improve fault coverage, and guarantee the safe
operation of the circuit under test. These circuit modes and operations are distin-
guished using additional test signals or test clocks. The details are described in the
following sections.

In order to illustrate how scan design works, consider the sequential circuit
shown in Figure 2.7. This circuit contains combinational logic and three D flip-flops.
Assume that a stuck-at fault f in the combinational logic requires the primary input
X;, flip-flop FF,, and flip-flop FF; to be set to 0, 1, and 0, respectively, to capture
the fault effect into FF,. Because the values stored in FF, and FF; are not directly
controllable from the primary inputs, a long sequence of operations may have to
be applied in order to set FF, and FF; to the required values. Furthermore, in order
to observe the fault effect on the captured value in flip-flop FF,, a long checking
experiment may be required to propagate the value of FF; to a primary output.
From this example, it can be seen that the main difficulty in testing a sequential
circuit stems from the fact that it is difficult to control and observe the internal
state of the circuit.

Scan design, whose concept is illustrated in Figure 2.8, attempts to ease this
difficulty by providing external access to selected storage elements in a design. This
is accomplished by first converting selected storage elements in the design into scan
cells and then stitching them together to form one or more shift registers, called
scan chains. In the scan design illustrated in Figure 2.8, the n storage elements are
now configured as a shift register in shift mode. Any test stimulus and test response
can now be shifted into and out of the n scan cells in n clock cycles, respectively,
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Scan design concept.

without having to resort to applying an exponential number of clock cycles to force
all storage elements to a desired internal state. Hence, the task of detecting fault f
in Figure 2.7 becomes a simple matter of: (1) switching to shift mode and shifting
in the desired test stimulus, 1 and 0, to FF, and FF;, respectively; (2) driving a 0
onto primary input X;; (3) switching to capture mode and applying one clock pulse
to capture the fault effect into FF;; and, finally, (4) switching back to shift mode
and shifting out the test response stored in FF,, FF,, and FF; for comparison with
the expected response.

Because scan design provides access to internal storage elements, test generation
complexity is reduced. In the following two sections, a number of popular scan cell
designs and scan architectures for supporting scan design are described in more
detail.
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2.4 SCAN CELL DESIGNS

As mentioned in the previous section, in general, a scan cell has two different
input sources that can be selected. The first input, data input, is driven by the
combinational logic of a circuit, while the second input, scan input, is driven by
the output of another scan cell in order to form one or more shift registers called
scan chains. These scan chains are made externally accessible by connecting the
scan input of the first scan cell in a scan chain to a primary input and the output
of the last scan cell in a scan chain to a primary output.

Because there are two input sources in a scan cell, a selection mechanism must
be provided to allow a scan cell to operate in two different modes: normal/capture
mode and shift mode. In normal/capture mode, data input is selected to update
the output. In shift mode, scan input is selected to update the output. This makes
it possible to shift in an arbitrary test pattern to all scan cells from one or more
primary inputs while shifting out the contents of all scan cells through one or more
primary outputs. In this section, we describe three widely used scan cell designs:
muxed-D scan, clocked-scan, and level-sensitive scan design (LSSD).

2.4.1 Muxed-D Scan Cell

The D storage element is one of the most widely used storage elements in logic
design. Its basic function is to pass a logic value from its input to its output when a
clock is applied. A D flip-flop is an edge-triggered D storage element, and a D latch
is a level-sensitive D storage element. The most widely used scan cell replacement
for the D storage element is the muxed-D scan cell. Figure 2.9a shows an edge-
triggered muxed-D scan cell design. This scan cell is composed of a D flip-flop
and a multiplexer. The multiplexer uses a scan enable (SE) input to select between
the data input (DI) and the scan input (SI).

In normal/capture mode, SE is set to 0. The value present at the data input DI is
captured into the internal D flip-flop when a rising clock edge is applied. In shift
mode, SE is set to 1. The SI is now used to shift in new data to the D flip-flop while
the content of the D flip-flop is being shifted out. Sample operation waveforms are
shown in Figure 2.9b.

Figure 2.10 shows a level-sensitive/edge-triggered muxed-D scan cell design,
which can be used to replace a D latch in a scan design. This scan cell is com-
posed of a multiplexer, a D latch, and a D flip-flop. Again, the multiplexer uses a
scan enable input SE to select between the data input DI and the scan input SI;
however, in this case, shift operation is conducted in an edge-triggered manner,
while normal operation and capture operation are conducted in a level-sensitive
manner.

Major advantages of using muxed-D scan cells are their compatibility to modern
designs using single-clock D flip-flops, and the comprehensive support provided by
existing design automation tools. The disadvantage is that each muxed-D scan cell
adds a multiplexer delay to the functional path.
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Edge-triggered muxed-D scan cell design and operation: (a) edge-triggered muxed-D scan cell, and (b)
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Level-sensitive/edge-triggered muxed-D scan cell design.

2.4.2 Clocked-Scan Cell

An edge-triggered clocked-scan cell can also be used to replace a D flip-flop in a
scan design [McCluskey 1986]. Similar to a muxed-D scan cell, a clocked-scan cell
also has a data input DI and a scan input SI; however, in the clocked-scan cell,
input selection is conducted using two independent clocks, data clock DCK and
shift clock SCK, as shown in Figure 2.11a.

In normal/capture mode, the data clock DCK is used to capture the value present
at the data input DI into the clocked-scan cell. In shift mode, the shift clock SCK
is used to shift in new data from the scan input S/ into the clocked-scan cell, while
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Clocked-scan cell design and operation: (a) clocked-scan cell, and (b) sample waveforms.

the current content of the clocked-scan cell is being shifted out. Sample operation
waveforms are shown in Figure 2.11b.

As in the case of muxed-D scan cell design, a clocked-scan cell can also be made
to support scan replacement of a D latch. The major advantage of using a clocked-
scan cell is that it results in no performance degradation on the data input. The
major disadvantage, however, is that it requires additional shift clock routing.

2.4.3 LSSD Scan Cell

While muxed-D scan cells and clocked-scan cells are generally used for edge-
triggered, flip-flop-based designs, an LSSD scan cell is used for level-sensitive,
latch-based designs [Eichelberger 1977] [Eichelberger 1978] [DasGupta 1982].
Figure 2.12a shows a polarity-hold shift register latch (SRL) design described in
[Eichelberger 1977] that can be used as an LSSD scan cell. This scan cell contains
two latches, a master two-port D latch L, and a slave D latch L,. Clocks C, A, and B
are used to select between the data input D and the scan input [ to drive +L; and
+L,. In an LSSD design, either +L, or +L, can be used to drive the combinational
logic of the design.

In order to guarantee race-free operation, clocks A, B, and C are applied in a
nonoverlapping manner. In designs where +L,; is used to drive the combinational



58 VLSI Test Principles and Architectures

SRL
D
+L1
Cc
| L
+L,
A [

@

L, |

(b)

® FIGURE 2.12

Polarity-hold SRL design and operation: (a) polarity-hold SRL, and (b) sample waveforms.

logic, the master latch L, uses the system clock C to latch system data from the data
input D and to output this data onto +L,. In designs where +L, is used to drive
the combinational logic, clock B is used after clock A to latch the system data from
latch L; and to output this data onto +L,. In both cases, capture mode uses both
clocks C and B to output system data onto +L,. Finally, in shift mode, clocks A and
B are used to latch scan data from the scan input I and to output this data onto
+L, and then latch the scan data from latch L, and to output this data onto +L,,
which is then used to drive the scan input of the next scan cell. Sample operation
waveforms are shown in Figure 2.12b.

The major advantage of using an LSSD scan cell is that it allows us to insert
scan into a latch-based design. In addition, designs using LSSD are guaranteed to
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be race-free, which is not the case for muxed-D scan and clocked-scan designs.
The major disadvantage, however, is that the technique requires routing for the
additional clocks, which increases routing complexity.

2.5 SCAN ARCHITECTURES

In this section, we describe three popular scan architectures. These scan architec-
tures include: (1) full-scan design, where all storage elements are converted into scan
cells and combinational ATPG is used for test generation; (2) partial-scan design,
where a subset of storage elements is converted into scan cells and sequential ATPG
is typically used for test generation; and (3) random-access scan design, where a
random addressing mechanism, instead of serial scan chains, is used to provide
direct access to read or write any scan cell.

2.5.1 Full-Scan Design

In full-scan design, all storage elements are replaced with scan cells, which are
then configured as one or more shift registers (also called scan chains) during the
shift operation. As a result, all inputs to the combinational logic, including those
driven by scan cells, can be controlled and all outputs from the combinational logic,
including those driving scan cells, can be observed. The main advantage of full-scan
design is that it converts the difficult problem of sequential ATPG into the simpler
problem of combinational ATPG.

A variation of full-scan design, where a small percentage of storage elements
(sometimes only a few) are not replaced with scan cells, is referred to as almost
full-scan design. These storage elements are often left out of scan design for
performance reasons, such as storage elements that are on critical paths, or for
functional reasons, such as storage elements driven by a small clock domain that
are deemed too insignificant to be worth the additional scan insertion effort. In
this case, these storage elements may result in fault coverage loss.

2.5.1.1 Muxed-D Full-Scan Design

Figure 2.13 shows a sequential circuit example with three D flip-flops. The corre-
sponding muxed-D full-scan circuit is shown in Figure 2.14a. The three D flip-flops,
FF,, FF,, and FF;, are replaced with three muxed-D scan cells, SFF,, SFF,, and
SFF,, respectively.

In Figure 2.14a, the data input DI of each scan cell is connected to the output of
the combinational logic as in the original circuit. To form a scan chain, the scan
inputs SI of SFF, and SFF; are connected to the outputs Q of the previous scan cells,
SFF, and SFF,, respectively. In addition, the scan input SI of the first scan cell SFF,
is connected to the primary input S/, and the output Q of the last scan cell SFF,
is connected to the primary output SO. Hence, in shift mode, SE is set to 1, and
the scan cells operate as a single scan chain, which allows us to shift in any com-
bination of logic values into the scan cells. In capture mode, SE is set to 0, and the
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Design for Testability 61

scan cells are used to capture the test response from the combinational logic when
a clock is applied.

In general, combinational logic in a full-scan circuit has two types of inputs:
primary inputs (PIs) and pseudo primary inputs (PPIs). Primary inputs refer to
the external inputs to the circuit, while pseudo primary inputs refer to the scan
cell outputs. Both PIs and PPIs can be set to any required logic values. The only
difference is that PIs are set directly in parallel from the external inputs, and PPIs
are set serially through scan chain inputs. Similarly, the combinational logic in a
full-scan circuit has two types of outputs: primary outputs (POs) and pseudo pri-
mary outputs (PPOs). Primary outputs refer to the external outputs of the circuit,
while pseudo primary outputs refer to the scan cell inputs. Both POs and PPOs
can be observed. The only difference is that POs are observed directly in parallel
from the external outputs, while PPOs are observed serially through scan chain
outputs.

Figure 2.14b shows a timing diagram to illustrate how the full-scan design is
utilized to test the circuit shown in Figure 2.14a for stuck-at faults. During test, the
test mode signal TM (not shown) is set to 1, in order to turn on all test-related fixes
(see Table 2.6). Two test vectors, V; and V,, are applied to the circuit. In order to
apply V,, SE is first set to 1 to operate the circuit in shift mode (marked by S in
Figure 2.14b), and three clock pulses are applied to the clock CK. As a result, the
PPI portion of V;, denoted by V,:PPI, is now applied to the combinational logic. A
hold cycle is introduced between the shift and capture operations. During the hold
cycle, SE is switched to 0 such that the muxed-D scan cells are operated in capture
mode, and the PI portion of V,, denoted by V,:PI, is applied. The purpose of the
hold cycle is to apply the PI portion of V; and to give enough time for the globally
routed SE signal to settle from 1 to 0. At the end of the hold cycle, the complete
test vector is now applied to the combinational logic, and the logic values at the
primary outputs PO are compared with their expected values. Next, the capture
operation is conducted (marked by C in Figure 2.14b) by applying one clock pulse
to the clock CK in order to capture the test response of the combinational logic to
V, into the scan cells. A second hold cycle is added in order to switch SE back to
1 and to observe the PPO value of the last scan cell at the SO output. Next, a new
shift operation is conducted to shift out the test response captured in the scan cells
serially through SO, while shifting in V,:PPI, which is the PPI portion of the next
test pattern V,.

TABLE 2.6 m Circuit Operation Type and Scan Cell Mode

Circuit Operation Type | Scan Cell Mode ™ SE

Normal Normal 0 0

Shift operation Shift 1 1

Capture operation Capture 1 0
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2.5.1.2 Clocked Full-Scan Design

Figure 2.15 shows a clocked full-scan circuit implementation of the circuit given
in Figure 2.13. Clocked-scan cells are shown in Figure 2.11a. This clocked full-scan
circuit is tested using shift and capture operations, similar to a muxed-D full-scan
circuit. The main difference is how these two operations are distinguished. In a
muxed-D full-scan circuit, a scan enable signal SE is used, as shown in Figure 2.14a.
In the clocked full-scan circuit shown in Figure 2.15, these two operations are
distinguished by properly applying the two independent clocks SCK and DCK during
shift mode and capture mode, respectively.

2.5.1.3 LSSD Full-Scan Design

It is possible to implement LSSD full-scan designs, based on the polarity-hold SRL
design shown in Figure 2.12a, using either a single-latch design or a double-
latch design. In single-latch design [Eichelberger 1977], the output port +L; of
the master latch L, is used to drive the combinational logic of the design. In this
case, the slave latch L, is used only for scan testing. Because LSSD designs use
latches instead of flip-flops, at least two system clocks C; and C, are required to
prevent combinational feedback loops from occurring. In this case, combinational
logic driven by the master latches of the first system clock C, are used to drive the
master latches of the second system clock C,, and vice versa. In order for this to
work, the system clocks C; and C, should be applied in a nonoverlapping fashion.
Figure 2.16a shows an LSSD single-latch design.

Figure 2.16b shows an example of LSSD double-latch design [DasGupta 1982].
In normal mode, the C; and C, clocks are used in a nonoverlapping manner,
where the C, clock is the same as the B clock. The testing of an LSSD full-scan
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Clocked full-scan circuit.
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LSSD designs: (a) LSSD single-latch design, and (b) LSSD double-latch design.

circuit is conducted using shift and capture operations, similar to a muxed-D
full-scan circuit. The main difference is how these two operations are distin-
guished. In a muxed-D full-scan circuit, a scan enable signal SE is used, as shown
in Figure 2.14a. In an LSSD full-scan circuit, these two operations are distin-
guished by properly applying nonoverlapping clock pulses to clocks C;, C,, A,
and B. During the shift operation, clocks A and B are applied in a nonoverlap-
ping manner, and the scan cells SRL, ~ SRL; form a single scan chain from SI
to SO. During the capture operation, clocks C,; and C, are applied in a nonover-
lapping manner to load the test response from the combinational logic into the
scan cells.
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As mentioned in Section 2.4.3, the operation of a polarity-hold SRL is race-free
if clocks C and B as well as A and B are nonoverlapping. This characteristic is
used to implement LSSD circuits that are guaranteed to have race-free operation
in normal mode as well as in test mode. The required design rules [Eichelberger
1977] [Eichelberger 1978] are briefly summarized below:

®  All storage elements must be polarity-hold latches.

® The latches are controlled by two or more nonoverlapping clocks such that
any two latches where one feeds the other cannot have the same clock.

® A set of clock primary inputs must exist from which the clock ports of all SRLs
are controlled either through a single clock tree or through logic that is gated
by SRLs and/or non-clock primary inputs. In addition, the following three
conditions should be satisfied: (1) all clock inputs to SRLs must be inactive
when clock PIs are inactive, (2) the clock input to any SRL must be controlled
from one or more clock primary inputs, and (3) no clock can be ANDed with
another clock or its complement.

®  Clock primary inputs must not feed the data inputs to SRLs either directly or
through combinational logic.

®  Each system latch must be part of an SRL, and each SRL must be part of a
scan chain.

® A scan state exists under the following conditions: (1) each SRL or scan output
SO is a function of only the preceding SRL or scan input SI in its scan chain
during the scan operation, and (2) all clocks except the shift clocks are disabled
at the SRL clock inputs.

2.5.2 Partial-Scan Design

Unlike full-scan design where all storage elements in a circuit are replaced with
scan cells, partial-scan design only requires that a subset of storage elements be
replaced with scan cells and connected into scan chains [Trischler 1980] [Abadir
1985] [Agrawal 1987] [Ma 1988] [Cheng 1989] [Saund 1997]. Partial-scan design
was used in the industry long before full-scan design became the dominant scan
architecture. It can also be implemented using muxed-D scan cells, clocked-scan
cells, or LSSD scan cells. Depending on the structure of a partial-scan design, either
combinational ATPG or sequential ATPG, both of which are described in Chapter 4,
should be used.

An example of muxed-D partial-scan design is shown in Figure 2.17. In this
example, a scan chain is constructed with two scan cells SFF, and SFF;, while flip-
flop FF, is left out. Because only one clock is used, typically sequential ATPG has
to be used to control and observe the value of the non-scan flip-flop FF, through
SFF, and SFF; in order to detect faults related to FF,. This increases test generation
complexity for partial-scan designs [Cheng 1995]. It is possible to reduce the test
generation complexity by splitting the single clock into two separate clocks, one for
controlling all scan cells, the other for controlling all non-scan storage elements;
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Partial-scan design.

however, this may result in the additional complexity of routing two separate clock
trees during physical implementation.

In order to reduce the test generation complexity, many approaches have been
proposed for determining the subset of storage elements for scan cell replacement.
Scan cell selection can be conducted by using a functional partitioning approach, a
pipelined or feed-forward partial-scan design approach, or a balanced partial-scan
design approach.

In the functional partitioning approach, a circuit is viewed as being composed
of a data path portion and a control portion. Typically, because storage elements
on the data path portion cannot afford too much delay increase, especially when
replaced with muxed-D scan cells, they are left out of the scan cell replacement
process. On the other hand, storage elements in the control portion can be replaced
with scan cells. This approach makes it possible to improve fault coverage while
limiting the performance degradation due to scan design.

In the pipelined or feed-forward partial-scan design approach [Cheng 1990],
a subset of storage elements to be replaced with scan cells is selected to make
the sequential circuit feedback-free. This is accomplished by selecting the storage
elements to break all sequential feedback loops so that test generation complexity
is reduced and the silicon area overhead is kept low. In order to select these storage
elements, a structure graph is first constructed for the sequential circuit, where each
vertex represents a storage element and each directed edge from vertex v; to vertex
v; represents a combinational logic path from v; to v;. For a feedback-free sequential
circuit, the structure graph is a directed acyclic graph, where the maximum level
in the structure graph is referred to as sequential depth. On the other hand, the
structure graph of a sequential circuit containing feedback loops is a directed cyclic
graph (DCG). Figure 2.18a shows a block diagram of a feedback-free sequential
circuit; its corresponding structure graph is shown in Figure 2.18b with a sequential
depth of 3.
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(@ (b)
® FIGURE 2.18

Sequential circuit and its structure graph: (a) sequential circuit, and (b) structure graph.

The sequential depth of a circuit is equal to the maximum number of clock cycles
that must be applied in order to control and observe values to and from all non-
scan storage elements. In a full-scan design, because all scan cells can be controlled
and observed directly in shift mode, the sequential depth of a full-scan circuit is
0. Similarly, the sequential depth of a combinational logic block is also 0. In a
partial-scan design, replacing a storage element with a scan cell is equivalent to
removing its corresponding vertex from the structure graph.

In general, the difficulty of sequential ATPG is largely due to the existence
of sequential feedback loops. By breaking all feedback loops, test generation for
feedback-free sequential circuits becomes computationally efficient; hence, the scan
cell selection problem can be expressed as finding the smallest set of vertices to
break all feedback loops in a structure graph. The selected vertices are the storage
elements that must be replaced with scan cells in order to produce a pipelined or
feed-forward partial-scan design; however, a design can contain many self-loops
or small loops. Breaking all feedback loops may result in large area overhead.
The authors of [Cheng 1990] and [Agrawal 1995] have demonstrated that breaking
only large loops, while keeping self-loops or small loops, can produce equally good
results. As reported in [Cheng 1990], fault coverage as high as over 95% can be
achieved by replacing roughly 25 to 50% of all storage elements with scan cells for
a small design.

In the balanced partial-scan design approach, a target sequential depth (e.g.,
3 to 5) is used to further simplify the test generation process for the pipelined or
feed-forward partial-scan design. In this approach, additional vertices are removed
from the structure graph by replacing their corresponding storage elements with
scan cells so the target sequential depth is met. By keeping the sequential depth
under a small limit, one can apply combinational ATPG using multiple time frames
to further increase the fault coverage of the design [Gupta 1990].

To summarize, the main advantage of partial-scan design is that it reduces silicon
area overhead and performance degradation. The main disadvantage is that it can
result in lower fault coverage and longer test generation time than a full-scan
design. In practice, functional test vectors often have to be added in order to meet
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the target fault coverage goal. In addition, partial-scan design offers less support
for debug, diagnosis, and failure analysis.

2.5.3 Random-Access Scan Design

Full-scan design and partial-scan design can be classified as serial scan design, as
test pattern application and test response acquisition are both conducted serially
through scan chains. The major advantage of serial scan design is its low routing
overhead, as scan data is shifted through adjacent scan cells. Its major disadvan-
tage, however, is that individual scan cells cannot be controlled or observed without
affecting the values of other scan cells within the same scan chain. High switching
activities at scan cells can cause excessive test power dissipation, resulting in cir-
cuit damage, low reliability, or even test-induced yield loss. Random-access scan
(RAS) attempts to alleviate these problems by making each scan cell randomly and
uniquely addressable, similar to storage cells in a random-access memory (RAM).

Traditional RAS design [Ando 1980] is illustrated in Figure 2.19. All scan cells are
organized into a two-dimensional array, where they can be accessed individually
for observing (reading) or updating (writing) in any order. This full-random access
capability is achieved by decoding a full address with a row (X) decoder and a
column (Y) decoder. A [log,n]-bit address shift register, where # is the total number
of scan cells, is used to specify which scan cell to access.

The RAS design significantly reduces test power dissipation and simplifies the
process of performing delay tests because two independent test vectors can be
applied consecutively. Its major disadvantage, however, is high overhead in scan
cell design and routing required to set up the addressing mechanism. In addition,
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Traditional random-access scan architecture.
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there is no guarantee that the test application time can be reduced if a large number
of scan cells have to be updated for each test vector or the addresses of scan cells
to be consecutively accessed have little overlap.

Recently, the progressive random-access scan (PRAS) design [Baik 2005] was
proposed in an attempt to alleviate the problems associated with the traditional
RAS design. The PRAS scan cell, as shown in Figure 2.20a, has a structure similar
to that of a static random access memory (SRAM) cell or a grid-addressable latch
[Susheel 2002], which has significantly smaller area and routing overhead than the
traditional scan cell design [Ando 1980]. In normal mode, all horizontal row enable
RE signals are set to 0, forcing each scan cell to act as a normal D flip-flop. In test
mode, to capture the test response from D, the RE signal is set to 0 and a pulse is
applied on clock ®, which causes the value on D to be loaded into the scan cell. To
read out the stored value of the scan cell, clock ® is held at 1, the RE signal for the
selected scan cell is set to 1, and the content of the scan cell is read out through
the bidirectional scan data signals SD and SD. To write or update a scan value into
the scan cell, clock ® is held at 1, the RE signal for the selected scan cell is set to 1,
and the scan value and its complement are applied on SD and SD, respectively.

The PRAS architecture is shown in Figure 2.20b, where rows are enabled in a
fixed order, one at a time, by rotating a 1 in the row enable shift register. That is, it is
only necessary to supply a column address to specify which scan cell in an enabled
row to access. The length of the column address, which is [log,m] for a circuit with
m columns, is considerably shorter than a full (row and column) address; therefore,
the column address is provided in parallel in one clock cycle instead of providing a
full address in multiple clock cycles. This reduces test application time. In order to
minimize the need to shift out test responses, the scan cell outputs are compressed
with a multiple-input signature register (MISR). More details on MISRs can be
found in Section 5.4.3 of Chapter 5.

The test procedure of the PRAS design is shown in Figure 2.20c. For each test
vector, the test stimulus application and test response compression are conducted
in an interleaving manner when the test mode signal TM is enabled. That is, all
scan cells in a row are first read into the MISR for compression simultaneously,
and then each scan cell in the row is checked and updated if necessary. Repeating
this operation for all rows compresses the test response to the previous test vector
into the MISR and sets the next test vector to all scan cells. Next, TM is disabled
and the normal clock is applied to conduct test response acquisition. It can be
seen that the smaller the number of scan cells to be updated for each row, the
shorter the test application time. This can be achieved by reducing the Hamming
distance between the next test vector and the test response to the previous test
vector. Possible solutions include test vector reordering and test vector modification
[Baik 2004] [Baik 2005].

It was reported in [Baik 2005] that on average, PRAS design achieved a 37.1%,
64.9%, 85.9%, and 99.5% reduction in test data volume, test application time, peak
switching activity, and average switching activity, respectively, when compared with
full scan design for several benchmark circuits. The costs were a 25.6% increase in
routing overhead and an 11.0% increase in area overhead. Similar results with a
different RAS architecture were reported in [Mudlapur 2005]. These results indicate
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for each test vector v; (i=1, 2, ..., N) {
[* Test stimulus application */
[* Test response compression */
enable TM;
foreach row rj (j=1, 2, ..., m) {
read all scan cells in r; / update MISR;
for each scan cell SCinr;
/* v(SC): current value of SC */
/* v;(SC): value of SC in v; */
if v(SC) # v;(SC)
update SC;
}
[* Test response acquisition */
disable T™;
apply the normal clock;

scan-out MISR as the final response;

©

= FIGURE 2.20

Progressive random-access scan design: (a) PRAS scan cell design, (b) PRAS architecture, and (c) PRAS
test procedure.
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that RAS design achieves significant reduction in test power dissipation, as well
as a good reduction in test data volume and test application time. As test power
and delay fault testing are becoming crucial issues in nanometer designs, the RAS
approach represents a promising alternative to serial scan design and thus deserves
further research.

2.6 SCAN DESIGN RULES

In order to implement scan into a design, the design must comply with a set
of scan design rules [Cheung 1996]. In addition, a set of design styles must be
avoided, as they may limit the fault coverage that can be achieved. A number of
scan design rules that are required to successfully utilize scan and achieve the
target fault coverage goal are listed in Table 2.7. In this table, a possible solution
is recommended for each scan design rule violation. Scan design rules that are
labeled “avoid” must be fixed throughout the shift and capture operations. Scan
design rules that are labeled “avoid during shift” must be fixed only during the
shift operation. Detailed descriptions are provided for some critical scan design
rules.

TABLE 2.7 m Typical Scan Design Rules

Design Style Scan Design Rule Recommended Solution
Tristate buses Avoid during shift Fix bus contention during shift
Bidirectional 1/0 ports Avoid during shift Force to input or output

mode during shift
Gated clocks (muxed-D full-scan) Avoid during shift Enable clocks during shift
Derived clocks (muxed-D full-scan) | Avoid Bypass clocks
Combinational feedback loops Avoid Break the loops
Asynchronous set/reset signals Avoid Use external pins
Clocks driving data Avoid Block clocks to the data portion
Floating buses Avoid Add bus keepers
Floating inputs Not recommended Tie to Vpp or ground
Cross-coupled NAND/NOR gates Not recommended Use standard cells
Non-scan storage elements Not recommended Initialize to known states,

for full-scan design bypass, or make transparent




Design for Testability 71

2.6.1 Tristate Buses

Bus contention occurs when two bus drivers force opposite logic values onto a
tristate bus, which can damage the chip. Bus contention is designed not to happen
during the normal operation and is typically avoided during the capture operation,
as advanced ATPG programs can generate test patterns that guarantee only one
bus driver controls a bus. However, during the shift operation, no such guarantees
can be made; therefore, certain modifications must be made to each tristate bus in
order to ensure that only one driver controls the bus. For example, for the tristate
bus shown in Figure 2.21a, which has three bus drivers (D, D,, and D;), circuit
modification can be made as shown in Figure 2.21b, where EN, is forced to 1 to
enable the D, bus driver, while EN, and EN; are set to 0 to disable both D, and D,
bus drivers, when SE=1.

In addition to bus contention, a bus without a pull-up, pull-down, or bus keeper
may result in fault coverage loss. The reason is that the value of a floating bus is
unpredictable, which makes it difficult to test for a stuck-at-1 fault at the enable
signal of a bus driver. To solve this problem, a pull-up, pull-down, or bus keeper
can be added. The bus keeper added in Figure 2.21b is an example of fixing this
problem by forcing the bus to preserve the logic value driven onto it prior to when
the bus becomes floating.

2.6.2 Bidirectional I/0 Ports

Bidirectional I/O ports are used in many designs to increase the data transfer band-
width. During the capture operation, a bidirectional I/O port is usually specified as
being either input or output; however, conflicts may occur at a bidirectional I/O
port during the shift operation. An example is shown in Figure 2.22a, where a bidi-
rectional I/O port is used as an input and the direction control is provided by the
scan cell. Because the output value of the scan cell can vary during the shift opera-
tion, the output tristate buffer may become active, resulting in a conflict if BO and
the I/O port driven by the tester have opposite logic values. Figure 2.22b shows an
example of how to fix this problem by forcing the tristate buffer to be inactive when
SE =1, and the tester is used to drive the I/O port during the shift operation. During
the capture operation, the applied test vector determines whether a bidirectional
I/0 port is used as input or output and controls the tester appropriately.

2.6.3 Gated Clocks

Clock gating is a widely used design technique for reducing power by elimi-
nating unnecessary storage element switching activity. An example is shown in
Figure 2.23a. The clock enable signal (EN) is generated at the rising edge of CK
and is loaded into the latch LAT at the failing edge of CK to become CEN. CEN is
then used to enable or disable clocking for the flip-flop DFF. Although clock gating
is a good approach for reducing power consumption, it prevents the clock ports
of some flip-flops from being directly controlled by primary inputs. As a result,
modifications are necessary to allow the scan shift operation to be conducted on
these storage elements.
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Fixing bus contention: (a) original circuit, and (b) modified circuit.
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Fixing gated clocks: (a) original circuit, and (b) modified circuit.

The clock gating function should be disabled at least during the shift operation.
Figure 2.23b shows how the clock gating can be disabled. In this example, an OR
gate is used to force CEN to 1 using either the test mode signal TM or the scan
enable signal SE. If TM is used, CEN will be held at 1 during the entire scan test
operation (including the capture operation). This will make it impossible to detect
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faults in the clock gating logic, causing fault coverage loss. If SE is used, CEN
will be held at 1 only during the shift operation but will be released during the
capture operation; hence, higher fault coverage can be achieved but at the expense
of increased test generation complexity.

2.6.4 Derived Clocks

A derived clock is a clock signal generated internally from a storage element or
a clock generator, such as phase-locked loop (PLL), frequency divider, or pulse
generator. Because derived clocks are not directly controllable from primary inputs,
in order to test the logic driven by these derived clocks, these clock signals must be
bypassed during the entire test operation. An example is illustrated in Figure 2.24a,
where the derived clock ICK drives the flip-flops DFF, and DFF,. In Figure 2.24b, a
multiplexer selects CK, which is a clock directly controllable from a primary input,
to drive DFF, and DFF, during the entire test operation when TM = 1.

2.6.5 Combinational Feedback Loops

Depending on whether the number of inversions on a combinational feedback loop
is even or odd, it can introduce either sequential behavior or oscillation into a
design. Because the value stored in the loop cannot be controlled or determined
during test, this can lead to an increase in test generation complexity or fault cov-
erage loss. Because combinational feedback loops are not a recommended design
practice, the best way to fix this problem is to rewrite the RTL code generating
the loop. In cases where this is not possible, a combinational feedback loop, as
shown in Figure 2.25a, can be fixed by using a test mode signal TM. This signal
permanently disables the loop throughout the entire shift and capture operations
by inserting a scan point (i.e., a combination of control and observation points) to
break the loop, as shown in Figure 2.25b.
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Fixing derived clocks: (a) original circuit, and (b) modified circuit.
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Fixing combinational feedback loops: (a) original circuit, and (b) modified circuit.

2.6.6 Asynchronous Set/Reset Signals

Asynchronous set/reset signals of scan cells that are not directly controlled from
primary inputs can prevent scan chains from shifting data properly. In order to
avoid this problem, it is required that these asynchronous set/reset signals be forced
to an inactive state during the shift operation. These asynchronous set/reset signals
are typically referred to as being sequentially controlled. An example of a sequen-
tially controlled reset signal RL is shown in Figure 2.26a. A method for fixing this
asynchronous reset problem using an OR gate with an input tied to the test mode
signal TM is shown in Figure 2.26b. When TM =1, the asynchronous reset signal
RL of scan cell SFF, is permanently disabled during the entire test operation.

The disadvantage of using the test mode signal TM to disable asynchronous
set/reset signals is that faults within the asynchronous set/reset logic cannot be
tested. Using the scan enable signal SE instead of TM makes it possible to detect
faults within the asynchronous set/reset logic, because during the capture operation
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Fixing asynchronous set/reset signals: (a) original circuit, and (b) modified circuit.
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(SE = 0) these asynchronous set/reset signals are not forced to the inactive state.
However, this might result in mismatches due to race conditions between the clock
and asynchronous set/reset ports of the scan cells. A better solution is to use an
independent reset enable signal RE to replace TM and to conduct test generation in
two phases. In the first phase, RE is set to 1 during both shift and capture operations
to test data faults through the DI port of the scan cells while all asynchronous
set/reset signals are held inactive. In the second phase, RE is set to 1 during the
shift operation and 0 during the capture operation without applying any clocks to
test faults within the asynchronous set/reset logic.

2.7 SCAN DESIGN FLOW

Although conceptually scan design is not difficult to understand, the practice of
inserting scan into a design in order to turn it into a scan design requires careful
planning. This often requires many circuit modifications where care must be taken
in order not to disrupt the normal functionality of the circuit. In addition, many
physical implementation details must be taken into consideration in order to guar-
antee that scan testing can be performed successfully. Finally, a good understanding
of scan design, with respect to which scan cell design and scan architecture to use,
is required in order to better plan in advance which scan design rules must be com-
plied with and which debug and diagnose features must be included to facilitate
simulation, debug, and fault diagnosis [Crouch 1999].

The shift operation and the capture operation are the two key scan operations
where care needs to be taken in order to guarantee that the scan design can oper-
ate properly. The shift operation, which is common to all scan designs, must be
designed to perform successfully, regardless of the clock skew that exists within the
same clock domain and between different clock domains. The capture operation is
also common to all scan designs, albeit with more stringent scan design rules in
some scan designs as compared to others. It must be designed such that the ATPG
tool is able to correctly and deterministically predict the expected responses of the
generated test patterns. This requires a basic understanding of the logic simulation
and fault models used during ATPG, as well as the clocking scheme used during
the capture operation.

A typical design flow for implementing scan in a sequential circuit is shown in
Figure 2.27. In this figure, scan design rule checking and repair are first performed
on a presynthesis RTL design or on a postsynthesis gate-level design, typically
referred to as a netlist. The resulting design after scan repair is referred to as a
testable design. Once all scan design rule violations are identified and repaired,
scan synthesis is performed to convert the testable design into a scan design.
The scan design now includes one or more scan chains for scan testing. A scan
extraction step is used to further verify the integrity of the scan chains and to
extract the final scan architecture of the scan chains for ATPG. Finally, scan
verification is performed on both shift and capture operations in order to verify
that the expected responses predicted by the zero-delay simulator used in test
generation or fault simulation match with the full-timing behavior of the circuit
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Typical scan design flow.

under test. The steps shown in the scan design flow are described in the following
subsections in more detail.

2.7.1 Scan Design Rule Checking and Repair

The first step in implementing a scan design is to identify and repair all scan
design rule violations in order to convert the original design into a testable design.
Repairing these violations allows the testable design to meet target fault coverage
requirements and guarantees that the scan design will operate correctly. These
scan design rules were described in the previous section. In addition to these scan
design rules, certain clock control structures may have to be added for at-speed
delay testing. Typically, scan design rule checking is also performed on the scan
design after scan synthesis to confirm that no new violations exist.

Upon successful completion of this step, the testable design must guarantee the
correct shift and capture operations. During the shift operation, all clocks control-
ling scan cells of the design are directly controllable from external pins. The clock
skew between adjacent scan cells must be properly managed in order not to cause
any shift failure. During the capture operation, fixing all scan design rule violations
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should guarantee correctness for data paths that originate and terminate within the
same clock domain. For data paths that originate and terminate in different clock
domains, additional care must be taken in terms of the way the clocks are applied
in order to guarantee the success of the capture operation. This is mainly due to
the fact that the clock skew between different clock domains is typically large.
A data path originating in one clock domain and terminating in another might
result in a mismatch when both clocks are applied simultaneously, and the clock
skew between the two clocks is larger than the data path delay from the originating
clock domain to the terminating clock domain. In order to avoid the mismatch,
the timing governing the relationship of such a data path shown in the following
equation must be observed:

clock skew < data path delay + clock-to-Q delay (originating clock)

If this is not the case, a mismatch may occur during the capture operation. In
order to prevent this from happening, clocks belonging to different clock domains
can be applied sequentially (using the staggered clocking scheme), as opposed to
simultaneously, such that any clock skew that exists between the clock domains
can be tolerated during the test generation process. It is also possible to apply
only one clock during each capture operation using the one-hot clocking scheme.
On the other hand, a design typically contains a number of noninteracting clock
domains. In this case, these clocks can be applied simultaneously, which can reduce
the complexity and final pattern count of the pattern generation and fault simu-
lation process. Clock grouping is a process used to identify all independent or
noninteracting clocks that can be grouped and applied simultaneously.

An example of the clock grouping process is shown in Figure 2.28. This example
shows the results of performing a circuit analysis operation on a testable design
in order to identify all clock interactions, marked with an arrow, where a data
transfer from one clock domain to a different clock domain occurs. As seen in
Figure 2.28, the circuit in this example has seven clock domains (CD; ~ CD;) and
five crossing-clock-domain data paths (CCD, ~ CCDs). From this example, it can be
seen that CD, and CD; are independent from each other; hence, their related clocks
can be applied simultaneously during test as CK,. Similarly, clock domains CD,
through CD, can also be applied simultaneously during test as CK;. Therefore in
this example, three grouped clocks instead of seven individual clocks can be used
to test the circuit during the capture operation.

2.7.2 Scan Synthesis

When all the repairs have been made to the circuit, the scan synthesis flow is com-
menced. The scan synthesis flow converts a testable design into a scan design with-
out affecting the functionality of the original design. Static analysis tools and equiv-
alency checkers, which can compare the logic circuitry of two circuits under certain
constraints, are typically used to verify that this is indeed the case. Depending on
the type of scan cells used and the type of scan architecture implemented, minor
modifications to the scan synthesis flow shown in Figure 2.27 may be necessary.
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Clock grouping example.

During the 1990s, this scan synthesis operation was typically performed using a
separate set of scan synthesis tools, which were applied after the logic synthesis tool
had synthesized a gate-level netlist out of an RTL description of the design. More
recently, these scan synthesis features are being integrated into the logic synthesis
tools, and scan designs are synthesized automatically from the RTL. The process
of performing scan synthesis during logic synthesis is often referred to as one-pass
synthesis or single-pass synthesis. The scan synthesis flow shown in Figure 2.27
includes four separate steps: (1) scan configuration, (2) scan replacement, (3) scan
reordering, and (4) scan stitching. Each of these steps is described below in more
detail.

2.7.2.1 Scan Configuration

Scan configuration describes the initial step in scan chain planning, where the
general structure of the scan design is determined. The main decisions that are
made at this stage include: (1) the number of scan chains used; (2) the types of
scan cells used to implement these scan chains; (3) storage elements to be excluded
from the scan synthesis process; and (4) the way the scan cells are arranged within
the scan chains.

The number of scan chains used is typically determined by analyzing the input
and output pins of the circuit to determine how many pins can be allocated for
the scan use. In order not to increase the number of pins of the circuit, which is
typically limited by the size of the die, scan inputs and outputs are shared with
existing pins during scan testing. In general, the larger the number of scan chains
used, the shorter the time to perform test on the circuit. This is due to the fact
that the maximum length of the scan chains dictates the overall test application
time required to run each test pattern. One limitation that can preclude many scan
chains from being used is the presence of high-speed /0 pads. The addition of any
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wire load to the high-speed I/0 pad may adversely affect the timing of the design.
An additional limitation is the number of tester channels available for scan testing.

The second issue regarding the types of scan cells to use typically depends on
the process library. In general, for each type of storage element used, most process
libraries have a corresponding scan cell type that closely resembles the functionality
and timing of the storage element during normal operation.

The third issue relates to which storage elements to exclude from scan synthesis.
This is typically determined by investigating parts of the design where replacing
storage elements with functionally equivalent scan cells can adversely affect timing.
Therefore, storage elements lying on the critical paths of a design where the timing
margin is very tight are often excluded from the scan replacement step, in order to
guarantee that the manufactured device will meet the restricted timing. In addition,
certain parts of a design may be excluded from scan for many different reasons,
including security reasons (e.g., parts of a circuit that deal with encryption). In
these cases, individual storage element types, individual storage element instances,
or a complete section of the design can be specified as “don’t scan.”

The remaining issue is to determine how the storage elements are arranged within
the scan chains. This typically depends on how the number of clock domains relates
to the number of scan chains in the design. In general, a scan chain is formed out
of scan cells belonging to a single clock domain. For clock domains that contain a
large number of scan cells, several scan chains are constructed, and a scan-chain
balancing operation is performed on the clock domain to reduce the maximum
scan-chain length. Oftentimes, a clock domain will include both negative-edge and
positive-edge scan cells. If the number of negative-edge scan cells in a clock domain
is large enough to construct a separate scan chain, then these scan cells can be
allocated as such. In cases where a scan chain has to include both negative-edge
and positive-edge scan cells, all negative-edge scan cells are arranged in the scan
chains such that they precede all positive-edge scan cells in order to guarantee that
the shift operation can be performed correctly.

Figure 2.29a shows an example of a circuit structure comprising a negative-edge
scan cell followed by a positive-edge scan cell. The associated timing diagram,
shown in Figure 2.29b, illustrates the correct shift timing of the circuit structure.
During each shift clock cycle, ¥ will first take on the state X at the rising CK
edge before X is loaded with the SI value at the falling CK edge. If we acciden-
tally place the positive-edge scan cell before the negative-edge scan cell, both scan
cells will always incorrectly contain the same value at the end of each shift clock
cycle.

In cases where scan chains must include scan cells from several different clock
domains, a lock-up latch is inserted between adjacent cross-clock-domain scan cells
to guarantee that any clock skew between the clocks can be tolerated. Clock skew
between different clock domains is expected, as clock skew is controlled within
a clock domain to remain below a certain threshold, but not controlled across
different clock domains. As a result, a race caused by hold time violation could
occur between these two scan cells if a lock-up latch is not inserted.

Figure 2.30a shows an example of a circuit structure having a scan cell SCp
belonging to clock domain CK,; driving a scan cell SCq belonging to clock
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domain CK, through a lock-up latch. The associated timing diagram is shown in
Figure 2.30b, where CK, arrives after CK,, to demonstrate the effect of clock skew
on cross-clock-domain scan cells. During each shift clock cycle, X will first take on
the SI value at the rising CK, edge, then Z will take on the Y value at the rising
CK, edge. Finally, the new X value is transferred to Y at the falling CK, edge to
store the SCp contents. If CK, arrives earlier than CK,;, Z will first take on the Y
value at the rising CK, edge. Then, X will take on the SI value at the rising CK,
edge. Finally, the new X value is transferred to Y at the falling CK, edge to store
the SCp contents. In both cases, the lock-up latch design in Figure 2.30a allows
correct shift operation regardless of whether CK, arrives earlier or later than CK;.
It is important to note that this scheme works only when the clock skew between
CK, and CK, is less than the width (duty cycle) of the clock pulse. If this is not the
case, then slowing down the shift clock frequency or enlarging the duty cycle of
the shift clock can guarantee that this approach will work for any amount of clock
skew. Other lock-up latch and lock-up flip-flop designs can also be used.

Once the clock structure of the scan chains is determined, it is still necessary to
determine which scan cells should be stitched together into one scan chain and the
order in which these scan cells should be placed. In some scan synthesis flows, a
preliminary layout placement is used to allocate scan cells to different scan chains
belonging to the same clock domain. Then, the best order in which to stitch these
scan cells within the scan chains is determined in order to minimize the scan
routing required to connect the output of each scan cell to the scan input of the
next scan cell. In cases where a preliminary placement is not available, scan cells
can be assigned to different scan chains based on an initial floor plan of the testable
design, by grouping scan cells in proximate regions of the design together. Once the
final placement is determined, the scan chains can then be reordered and stitched,
and the scan design is modified based on the new scan chain order.

2.7.2.2 Scan Replacement

After scan configuration is complete, scan replacement replaces all original storage
elements in the testable design with their functionally equivalent scan cells. The
testable design after scan replacement is often referred to as a scan-ready design.
Functionally equivalent scan cells are the scan cells that most closely match power,
speed, and area requirements of the original storage elements. The scan inputs
of these scan cells are often tied to the scan outputs of the same scan cell to
prevent floating inputs from being present in the circuit. These connections are
later removed during the scan stitching step. In cases where one-pass or single-pass
synthesis is used, scan replacement is transparent to tool users. Recently, some RTL
scan synthesis tools have implemented scan replacement at the RTL, even before
going to the logic/scan synthesis tool, in order to reflect the scan design changes in
the original RTL design.

2.7.2.3 Scan Reordering

Scan reordering refers to the process of reordering scan cells in scan chains, based
on the physical scan cell locations, in order to minimize the amount of interconnect
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wires used to implement the scan chains. During design implementation, if the
physical location of each scan cell instance is not available, a “random” scan order
based purely on the module-level and bus-level connectivity of the testable design
can be used. However, if a preliminary placement is available, scan cells can be
assigned to different scan chains based on the initial floor plan of the design. Only
after the final placement process of the physical implementation is performed on
this testable design is the physical location of each scan cell instance taken into
consideration. During the routing process of the physical implementation, scan
reordering can be performed using intra-scan-chain reordering, inter-scan-chain
reordering, or a combination of both. Intra-scan-chain reordering, in which scan
cells are reordered only within their respective scan chains, does not reorder any
scan cells across clock or clock-polarity boundaries. Inter-scan-chain reordering,
in which scan cells are reordered among different scan chains, must make sure
that the clock structure of the scan chains is preserved. In both intra-scan-chain
reordering and inter-scan-chain reordering, care must be also taken to limit the
minimum distance between scan cells to avoid timing violations that can destroy
the integrity of the shift operation.

Advanced techniques have also been proposed to further reduce routing conges-
tion while avoiding timing violations during the shift operation [Duggirala 2002]
[Duggirala 2004]. For deep submicron circuits, the capacitance of the scan chain
interconnect must also be taken into account to guarantee correct shift operation
[Barbagallo 1996].

2.7.2.4 Scan Stitching

Finally, the scan stitching step is performed to stitch all scan cells together to
form scan chains. Scan stitching refers to the process of connecting the output
of each scan cell to the scan input of the next scan cell, based on the scan order
specified above. An additional step is also performed by connecting the scan input
of the first scan cell of each scan chain to the appropriate scan chain input port
and the scan output of the last scan cell of each scan chain to the appropriate scan
chain output port to make the scan chains externally accessible. In cases where
a shared I/O port is used to connect to the scan chain input or the scan chain
output, additional signals must be connected to the shared I/0O port to guarantee
that it always behaves as either input or output, respectively, throughout the shift
operation. As mentioned earlier, it is important to avoid using high-speed I/O ports
as scan chain inputs or outputs, as the additional loading could result in a degra-
dation of the maximum speed at which the device can be operated. In addition
to stitching the existing scan cells, lock-up latches or lock-up flip-flops are often
inserted during the scan stitching step for adjacent scan cells where clock skew may
occur. These lock-up latches or lock-up flip-flops are then stitched between adjacent
scan cells.

2.7.3 Scan Extraction

When the scan stitching step is complete, the scan synthesis process is complete. The
original design has now been converted into a scan design; however, an additional
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step is often performed to verify the integrity of the scan chains, especially if any
design changes are made to the scan design. Scan extraction is the process used for
extracting all scan cell instances from all scan chains specified in the scan design.
This procedure is performed by tracing the design for each scan chain to verify
that all the connections are intact when the design is placed in shift mode. Scan
extraction can also be used to prepare for the test generation process to identify
the scan architecture of the design in cases where this information is not otherwise
available.

2.7.4 Scan Verification

When the physical implementation of the scan design is completed, including place-
ment and routing of all the cells of the design, a timing file in standard delay
format (SDF) is generated. This timing file resembles the timing behavior of the
manufactured device. This is then used to verify that scan testing can be successfully
performed on the manufactured scan design.

Other than the trivial problems of scan chains being incorrectly stitched, veri-
fication errors during the shift operation are typically due to hold time violations
between adjacent scan cells, where the data path delay from the output of a driving
scan cell to the scan input of the following scan cell is smaller than the clock skew
that exists between the clocks driving the two scan cells. In cases where the two
scan cells are driven by the same clock, this may indicate a failure of the clock
tree synthesis (CTS) process in guaranteeing that the clock skew between scan
cells belonging to the same clock domain be kept at a minimum. In cases where
the two scan cells are driven by different clocks, this may indicate a failure of
inserting a required lock-up latch between the scan cells of the two different clock
domains.

Apart from clock skew problems, other scan shift problems can occur. Often,
they stem from (1) an incorrect scan initialization sequence that fails to put the
design into test mode; (2) incomplete scan design rule checking and repair, where
the asynchronous set/reset signals of some scan cells are not disabled during shift
operation or the gated/generated clocks for some scan cells are not properly enabled
or disabled; or (3) incorrect scan synthesis, where positive-edge scan cells are placed
before negative-edge scan cells.

Scan capture problems typically occur due to mismatches between the zero-delay
model used in the test generation and fault simulation tool, and the full-timing
behavior of the real device. In these cases, care must be taken during the scan
design and test application process to: (1) provide enough clock delay between the
supplied clocks such that the clock capture order becomes deterministic, and (2)
prevent simultaneous clock and data switching events from occurring. Failing to
take clock events into proper consideration can easily result in a breakdown of the
zero-delay (cycle-based) simulator used in the test generation and fault simulation
process. More detailed information regarding scan verification of the shift and
capture operations is described below.
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2.7.4.1 \Verifying the Scan Shift Operation

Verifying the scan shift operation involves performing flush tests using a full-
timing logic simulator during the shift operation. A flush test is a shift test where
a selected flush pattern is shifted all the way through the scan chains in order to
verify that the same flush pattern arrives at the end of the scan chains at the correct
clock cycle. For example, a scan chain containing 1000 scan cells requires 1000
shift cycles to be applied to the scan chain for the selected flush pattern to begin
arriving at the scan output. If the data arrive early by a number of shift cycles, this
may indicate that a similar number of hold time problems exist in the circuit.

To detect clock skew problems between adjacent scan cells, the selected flush
pattern is typically a pattern that is capable of providing both 0-to-1 and 1-to-0
transitions to each scan cell. In order to ensure that a 0-to-0 or 1-to-1 transi-
tion of a scan cell does not corrupt the data, the selected flush pattern is further
extended to provide these transitions. A typical flush pattern that is used for testing
the shift operation is “01100,” which includes all four possible transitions. Dif-
ferent flush patterns can also be used for debugging different problems, such as
the all-zero and all-one flush patterns used for debugging stuck-at faults in the
scan chain.

Because observing the arrival of the data on the scan chain output cannot pinpoint
the exact location of any shift error in a faulty scan chain, flush testbenches are
typically created to observe the values at all internal scan cells to identify the
locations at which the shift errors exist. By using this technique, the faulty scan
chain can be easily and quickly diagnosed and fixed during the scan shift verification
process; for example:

®  Scan hold time problems that exist between scan cells belonging to different
clock domains indicate that a lock-up latch may be missing. Lock-up latches
should be inserted between these adjacent scan cells.

®  Scan hold time and setup time problems that exist between scan cells belong-
ing to the same clock domain indicate that the CTS process was not performed
correctly. In this case, either CTS has to be redone or additional buffers need
to be inserted between the failing scan cells to slow down the path.

B Scan hold time problems due to positive-edge scan cells followed by negative-
edge scan cells indicate that the scan chain order was not performed correctly.
Lock-up flip-flops rather than lock-up latches can be inserted between these
adjacent scan cells or the scan chains may have to be reordered by placing all
negative-edge scan cells before all positive-edge scan cells.

An additional approach to scan shift verification that has become more popular
in recent years involves performing static timing analysis (STA) on the shift path
in shift mode. In this case, the STA tool can immediately identify the locations of all
adjacent scan cells that fail to meet timing. The same solutions mentioned earlier
are then used to fix problems identified by the STA tool.
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2.7.4.2 Verifying the Scan Capture Operation

Verifying the scan capture operation involves simulating the scan design using a
full-timing logic simulator during the capture operation. This is used to identify the
location of any failing scan cells where the captured response does not match the
expected response predicted by the zero-delay logic simulator used in test gener-
ation or fault simulation. To reduce simulation time, a broadside-load testbench
is often used, where a test pattern is loaded directly into all scan cells in the scan
chains and only the capture cycle is simulated. Because the broadside-load test
does not involve any shift cycle in the test pattern, broadside-load testbenches often
include at least one shift cycle in the capture verification testbench to ensure that
each test pattern can at least shift once. This requires loading the test pattern into
the outputs of the previous scan cells, rather than directly into the outputs of the
current scan cells. In addition, verifying the scan capture operation often includes
a serial simulation, in which a limited number of test patterns, typically three to
five or as many as can be simulated within a reasonable time, are simulated. In this
serial simulation, a test pattern is simulated exactly how it would be applied on the
tester by shifting in each pattern serially through the scan chains inputs. Next, a
capture cycle is applied. The captured response is then shifted out serially to verify
that the complete scan chain operation can be performed successfully.

As mentioned before, mismatches in the capture cycle indicate that the zero-delay
simulation model used by the test generator and fault simulator failed to capture
all the details of the actual timing occurring in the device. Debugging these types
of failures is tedious and may involve observing all signals of the mismatching scan
cells as well as signal lines (also called nets) driving these scan cells. One brute-force
method commonly used by designers for removing these mismatches is to mask off
the locations by changing the expected response of the mismatching location into
an unknown (X) value. A new approach that has become more popular is to use
the static timing analysis tool for both scan shift and scan capture verification.

2.7.5 Scan Design Costs

The price of converting a design into a scan design involves numerous costs, includ-
ing area overhead cost, I/O pin cost, performance degradation cost, and design
effort cost. However, these costs are far outweighed by the benefits of scan, in terms
of the increased testability, lower test development cost, higher product quality
with a smaller number of defective parts shipped, and reduced fault diagnosis and
failure analysis time. As a result, implementing scan on a design has become almost
mandatory. The costs of implementing scan are summarized below:

" Area overhead cost—This cost comes primarily in two forms. The first is the
scan cell overhead cost due to the replacement of a storage element with
a scan cell. The second is the routing cost, which is caused by additional
routing of the scan chains, the scan enable signal, and additional shift clocks.
Layout-based scan reordering techniques typically do a good job of reducing
the overhead due to scan chain routing.
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B /O pin cost—Scan design typically requires a dedicated test mode pin to
indicate when scan testing is performed. Some designers have been able to
get around this need by developing an initialization sequence that is capable
of putting the design into test mode. Additional I/O cost is due to the possible
performance degradation of pins where scan inputs and scan outputs are

shared.

" Performance degradation cost—The additional scan input of a scan cell may
require placing an additional delay on the functional path. The effects of this
delay can be alleviated by embedding the scan replacement step in logic/scan
synthesis such that the logic optimization process can be aggressively per-
formed to reduce the effect of the added delay.

B Design effort cost—Implementing scan requires additional steps to be added
to the typical design flow to perform scan design rule checking and repair,
scan synthesis, scan extraction, and scan verification. Additional effort may
also be required by the layout engineers in order to perform global routing
of the scan enable signal or additional shift clocks, which must be designed
to reach all scan cells in the design while having the ability to switch value
within a reasonable time. As mentioned before, this cost is far outweighed
by the savings in test development efforts that would otherwise have to be
performed.

2.8 SPECIAL-PURPOSE SCAN DESIGNS

As discussed above, scan design allows us to use a small external interface to control
and observe the states of scan cells in a design which dramatically simplifies the
task of test generation. In addition, scan design can be used to reduce debug and
diagnosis time and facilitate failure analysis by giving access to the internal states of
the circuit. A few other scan methodologies have been proposed for special-purpose
testing. In this section, we describe three special-purpose scan designs—namely,
enhanced scan, snapshot scan, and error-resilient scan—used for delay testing,
system debug, and soft error protection, respectively.

2.8.1 Enhanced Scan

Testing for a delay fault requires applying a pair of test vectors in an at-speed
fashion. This is used to generate a logic value transition at a signal line or at
the source of a path, and the circuit response to this transition is captured at
the circuit’s operating frequency. Applying an arbitrary pair of vectors as opposed
to a functionally dependent pair of vectors, generated through the combinational
logic of the circuit under test, allows us to maximize the delay fault detection
capability. This can be achieved using enhanced scan [Malaiya 1983] [Glover 1988]
[Dervisoglu 1991].

Enhanced scan increases the capacity of a typical scan cell by allowing it to store
two bits of data that can be applied consecutively to the combinational logic driven
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Enhanced-scan architecture.

by the scan cells. For a muxed-D scan cell or a clocked-scan cell, this is achieved
through the addition of a D latch.

Figure 2.31 shows a general enhanced-scan architecture using muxed-D scan
cells. In this figure, in order to apply a pair of test vectors <V,, V, > to the design,
the first test vector V, is first shifted into the scan cells (SFF, ~ SFF,) and then
stored into the additional latches (LA, ~ LA,) when the UPDATE signal is set to
1. Next, the second test vector V, is shifted into the scan cells while the UPDATE
signal is set to 0, in order to preserve the V, values in the latches (LA, ~ LA,). Once
the second vector V, is shifted in, the UPDATE signal is applied to change V; to
V, while capturing the output response at-speed into the scan cells by applying CK
after exactly one clock cycle.

The main advantage of enhanced scan is that it allows us to achieve high delay
fault coverage, by applying any arbitrary pair of test vectors, that otherwise would
have been impossible. The disadvantages, however, are that each enhanced-scan cell
requires an additional scan-hold D latch and that maintaining the timing relation-
ship between UPDATE and CK for at-speed testing may be difficult. An additional
disadvantage is that many false paths, instead of functional data paths, may be
activated during test, causing an over-test problem. In order to reduce over-test, the
conventional launch-on-shift (also called skewed-load in [Savir 1993]) and launch-
on-capture (also called broad-side in [Savir 1994] or double-capture in Chapter 5)
delay test techniques using normal scan chains can be used. These conventional
delay test techniques are described in more detail in Chapters 4 and 5.

2.8.2 Snapshot Scan

Snapshot scan is used to capture a snapshot of the internal states of the storage
elements in a design at any time without having to disrupt the functional operation
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Scan-set architecture.

of the circuit. This is done by adding a scan cell to each storage element of interest
in the circuit. These scan cells are connected as one or more scan chains that can
be used to shift in and shift out any required test data or internal state snapshot
of the design. A snapshot scan design technique, called scan set, was proposed
in [Stewart 1978]. An example of scan-set architecture implemented by adding
clocked-scan cells to the system latches (two-port D latches) for snapshot scan is
shown in Figure 2.32.

In this figure, four different operations are possible: (1) Test data can be shifted
into and out of the scan cells (SFF, ~ SFF,) from the SDI and SDO pins, respectively,
using TCK. (2) The test data can be transferred to the system latches (L, ~ L,) in
parallel through their 2D inputs using UCK. (3) The system latch contents can be
loaded into the scan flip-flops through their /D inputs using DCK. (4) The circuit can
be operated in normal mode using CK to capture the values from the combinational
logic into the system latches (L, ~ L).

During normal (system) operation, the contents of the system latches can be
captured into the scan flip-flops any time DCK is applied. The captured response
stored in the scan cells (SFF, ~ SFF,) can then be shifted out for analysis. This
provides a powerful means of getting a snapshot of the system status that is very
helpful in system debug. It is also possible to shift in test data to the system latches
to ease fault diagnosis and failure analysis when UCK is applied to the system
latches. In addition, by adding observation scan cells that are connected to specific
circuit nodes, the scan-set technique makes it possible to capture the logic value
at any circuit node of interest and to shift it out for observation. As a result, the
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observability at nonstorage circuit nodes can be dramatically improved. Hence,
the scan-set technique can significantly improve the circuit’s diagnostic resolution
and silicon debug capability. These advantages have made the approach attractive
to high-performance and high-complexity designs [Kuppuswamy 2004], despite
the increased area overhead. The technique has also been extended to the LSSD
architecture [DasGupta 1981].

2.8.3 Error-Resilient Scan

Soft errors are transient single-event upsets (SEUs) caused by various types of
radiation. Cosmic radiation has long been regarded as the major source of soft
errors, especially in memories [May 1979], and chips used in space applications
typically use parity or error-correcting code (ECC) for soft error protection. As
circuit features begin to shrink into the nanometer ranges, error-causing activa-
tion energies are reduced. As a result, terrestrial radiation, such as alpha particles
from the packaging materials of a chip, is also beginning to cause soft errors with
increasing frequency. This has created reliability concerns, especially for micropro-
cessors, network processors, high-end routers, and network storage components.
Error-resilient scan, proposed in [Mitra 2005], can also be used to allow scan
design to protect a device from soft errors during normal system operation.

Error-resilient scan is based on the observation that soft errors either: (1) occur
in memories and storage elements and manifest themselves by flipping their stored
states, or (2) result in a transient fault in a combinational gate, as caused by an
ion striking a transistor within the combinational gate, and can be captured by a
memory or storage element [Nicolaidis 1999]. Data from [Mitra 2005] show that
combinational gates and storage elements contribute to a total of 60% of the soft
error rate (SER) of a design manufactured using current state-of-the-art technology
versus 40% for memories. Hence, it is no longer enough to consider soft error
protection only for memories without considering any soft error protection for
storage elements, as well.

Figure 2.33 shows an error-resilient scan cell design [Mitra 2005] that reduces
the impact of soft errors affecting storage elements by more than 20 times. This
scan cell consists of a system flip-flop and a scan portion, each comprised of a
one-port D latch and a two-port D latch, a C-element, and a bus keeper. This scan
cell supports two operation modes: system mode and test mode.

In test mode, TEST is set to 1, and the C-element acts as an inverter. During the
shift operation, a test vector is shifted into latches LA and LB by alternately applying
clocks SCA and SCB while keeping CAPTURE and CLK at 0. Then, the UPDATE
clock is applied to move the content of LB to PH,. As a result, a test vector is written
into the system flip-flop. During the capture operation, CAPTURE is first set to 1,
and then the functional clock CLK is applied which captures the circuit response
to the test vector into the system flip-flop and the scan portion simultaneously.
The circuit response is then shifted out by alternately applying clocks SCA and
SCB again.

In system mode, TEST is set to 0, and the C-element acts as a hold-state
comparator. The function of the C-element is shown in Table 2.8. When inputs O,
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Error-resilient scan cell.

TABLE 2.8 m C-Element Truth Table

0| 0 Q
0 0 1
1 1 0
0 1 Previous value retained
1 0 Previous value retained

and O, are unequal, the output of the C-element keeps its previous value. During
this mode, a 0 is applied to the SCA, SCB, and UPDATE signals, and a 1 is applied
to the CAPTURE signal. This converts the scan portion into a master-slave flip-flop
that operates as a shadow of the system flip-flop. That is, whenever the functional
clock CLK is applied, the same logic value is captured into both the system flip-flop
and the scan portion. When CLK is 0, the outputs of latches PH, and LB hold their
previous logic values. If a soft error occurs either at PH, or at LB, O, and O, will
have different logic values. When CLK is 1, the outputs of latches PH, and LA hold
their previous logic values, and the logic values drive O, and O,, respectively. If a
soft error occurs either at PH, or at LA, O, and O, will have different logic values.
In both cases, unless such a soft error occurs after the correct logic value passes
through the C-element and reaches the keeper, the soft error will not propagate to
the output Q and the keeper will retain the correct logic value at Q.

Error-resilient scan is one of the first online test techniques developed for soft
error protection. While the error-resilient scan cell requires more test signals,
clocks, and area overhead than conventional scan cells, the technique paves the way
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to develop more advanced error-resilient and error-tolerant scan and logic BIST
architectures to cope with the physical failures of the nanometer age.

2.9 RTL DESIGN FOR TESTABILITY

During the 1990s, the testability of a circuit was primarily assessed and improved
at the gate level. The reason was because the circuits were not too large that the
logic/scan synthesis process took an unreasonable amount of time. As device size
grows toward tens to hundreds of millions of transistors, tight timing, potential
yield loss, and low power issues begin to pose serious challenges. When combined
with increased core reusability and time-to-market pressure, it is becoming imper-
ative that most, if not all, testability issues be fixed at the RTL. This allows the
logic/scan synthesis tool and the physical synthesis tool, which takes physical lay-
out information into consideration, to optimize area, power, and timing after DFT
repairs are made. Fixing DFT problems at the RTL also allows designers to create
testable RTL cores that can be reused without having to repeat the DFT checking
and repair process for a number of times.

Figure 2.34 shows a design flow for performing testability repair at the gate level.
It is clear that performing testability repair at the gate level introduces a loop in
the design flow that requires repeating the time-consuming logic synthesis process
every time testability repair is made. This makes it attractive to attempt to perform
testability checking and repair at the RTL instead so testability violations can be
detected and fixed at the RTL, as shown in Figure 2.35, without having to repeat
the logic synthesis process.

An additional benefit of performing testability repair at the RTL is that it allows
scan to be more easily integrated with other advanced DFT features implemented
at the RTL, such as memory BIST, logic BIST, test compression, boundary scan,
and analog and mixed-signal (AMS) BIST. This allows us to perform all testabil-
ity integration at the RTL, as opposed to the current practices of integrating the

Gate-level design

m FIGURE 2.34

Gate-level testability repair design flow.
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RTL design
Testability repair
Testable RTL design

( Logic/scan synthesis ]

® FIGURE 2.35

RTL testability repair design flow.

advanced DFT features at the RTL, and later integrating them with scan at the gate
level. In the following, we describe the RTL DFT problems by focusing mainly on
scan design.

Some modern synthesis tools now incorporate testability repair and scan synthe-
sis as part of the logic synthesis process, such that a testable design free of scan
rule violations is generated automatically. In this case, if the DFT fixes made are
acceptable and do not have to be incorporated into the RTL, the flow can proceed
directly to test generation and scan verification.

2.9.1 RTL Scan Design Rule Checking and Repair

In order to perform scan design rule checking and repair at the RTL, a fast syn-
thesis step of the RTL is usually performed first. In fast synthesis, combinational
RTL code is mapped onto combinational primitives and high-level models, such
as adders and multipliers. This allows us to identify all possible scan design rule
violations and infer all storage elements in the RTL design.

Static solutions for identifying testability problems at the RTL without having to
perform any test vector simulation or dynamic solutions that simulate the structure
of the design through the RTL have been developed. These solutions allow us to
identify almost all testability problems at the RTL. While a few testability problems
remain that can be identified only at the gate level, this approach does reduce the
number of iterations involving logic synthesis, as shown in Figure 2.35. In addition,
it has become common to add scan design rules as part of RTL “lint” tools that
check for good coding and reusability styles, as well as user-defined coding style
rules [Keating 1999]. To further optimize testability results, clock grouping can also
be performed at the RTL as part of scan design rule checking [Wang 2005a].

Automatic methods for repairing RTL testability problems have also been devel-
oped [Wang 2005a]. An example of this is shown in Figure 2.36. The RTL code
shown in Figure 2.36a, which is written in the Verilog hardware description lan-
guage (HDL) [IEEE 1463-2001], represents a generated clock. In this example, a
flip-flop clk_15 can be inferred, whose value is driven to 1 when a counter value
q is equal to “1111.” The output of this flip-flop is then used to trigger the sec-
ond “always” statement, where an additional flip-flop can be inferred. Figure 2.36b
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always @(posedge clk)
if (9 ==4'b1111)
clk_15<= 1; ck 15 start —| D
else Q = Qf—d
begin
clk_15<=0; 2\ A
q<=q+1; clk 1 J
end
always @(posedge clk_15)
d < = start;

@ (b)

always@(posedge clk)
if(q == 4'b1111)
clk_15<=1; clk_15 start —| D
else Q Ql—d
begin
clk_15<=0; clk_test
g<=q+1; clk
end
assign clk_test = (TM)? clk : clk_15;
always @(posedge clk_test) ™
d <= start;

() (d)

= FIGURE 2.36

Automatic repair of a generated clock violation at the RTL: (a) generated clock (RTL code), (b) generated
clock (schematic), (c) generated clock repair (RTL code), and (d) generated clock repair (schematic).

shows a schematic of the flip-flop generating the clk_15 signal, as well as the flip-
flop driven by the generated clock, which is likely to be the structure synthesized
out of the RTL using a logic synthesis tool. This scan design rule violation can
be fixed using the test mode signal TM by modifying the RTL code as shown in
Figure 2.36¢c. The schematic for the modified RTL code is shown in Figure 2.36d.

2.9.2 RTL Scan Synthesis

When storage elements have been identified during RTL scan design rule check-
ing, either RTL scan synthesis or pseudo RTL scan synthesis can be performed.
In RTL scan synthesis, the scan synthesis step as described in Section 2.7.2 is
performed. The only difference is that the scan equivalent of each storage ele-
ment does not refer to a library cell but to an RTL structure that is equivalent
to the original storage element in normal mode. In this case, the scan chains are
inserted into the RTL design. In pseudo RTL scan synthesis, the scan synthesis
step is not performed; only pseudo primary inputs and pseudo primary outputs are
specified and stitched to primary inputs and primary outputs, respectively. This
approach is becoming more appealing to designers nowadays, because it can cope
with many advanced DFT structures, such as logic BIST and test compression,
where scan chains are driven internally by additional test structures synthesized
at the RTL. Once all advanced DFT structures are inserted at the RTL, a one-pass
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or single-pass synthesis step is performed using the RTL design flow, as shown in
Figure 2.35.

Several additional steps are actually performed in order to identify the storage
elements in the RTL design. First, all clocks are identified, either explicitly by
tracing from specified clock signal names, or implicitly by analyzing the sensitivity
list of all “always” blocks. When the clocks have been identified, all registers, each
consisting of one or more storage elements in the RTL design, are inferred by
analyzing all “assign” statements to determine which assignments can be mapped
onto a register while keeping track of the clock domain to which each register
belongs. In addition, the clock polarity of each register is determined.

When all registers have been identified and each converted into its scan equiva-
lent at the RTL, the next step is to stitch these individual scan cells into one or more
scan chains. One approach is to allocate scan cells to different scan chains based
on the driving clocks and to stitch all scan cells within a scan chain in a random
fashion [Aktouf 2000]. Although this approach is simple and straightforward, it can
introduce wiring congestion as well as high interconnect area overhead. In order to
solve these issues, it is better to take full advantage of the rich functional informa-
tion available at the RTL [Roy 2000] [Huang 2001]. Because storage elements are
identified as registers as opposed to a large number of unrelated individual storage
elements, it is beneficial to connect the scan cells (which are scan equivalence of
these storage elements) belonging to the same register sequentially in a scan chain.
This has been found to dramatically reduce wiring congestion and interconnect
area overhead.

2.9.3 RTL Scan Extraction and Scan Verification

In order to verify the scan-inserted RTL design (also called RTL scan design), both
scan extraction and scan verification must be performed. Scan extraction relies on
performing fast synthesis on the RTL scan design. This generates a software model
where scan extraction can be performed by tracing the scan connections of each
scan chain in a similar manner as scan extraction from a gate-level scan design.
Scan verification relies on a flush testbench that is used to simulate flush tests on
the RTL scan design. Because the inputs and outputs of the RTL scan design should
match the inputs and outputs of its gate-level scan design, the same flush testbench
can be used to verify the scan operation for both RTL and gate-level designs. It is
also possible to apply broadside-load tests for verifying the scan capture operation
at the RTL. In this case, either random test patterns or deterministic test patterns
generated at the RTL can be used [Ghosh 2001] [Ravi 2001] [Zhang 2003].

2.10 CONCLUDING REMARKS

Design for testability (DFT) has become vital for ensuring product quality. Over
the past decades, we have seen DFT engineering evolve in order to bridge the gap
between design engineering and test engineering. An early task of DFT engineering
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was to quantify testability. This led to the development of testability analysis, used
to identify design areas of poor controllability and observability. These techniques
have since proven effective in test generation, logic built-in self-test (BIST), and
fault coverage estimation.

When it was recognized that generating test patterns for a sequential circuit was a
much more difficult problem than generating test patterns for a combinational cir-
cuit, ad hoc DFT techniques were proposed but were met with limited success. Scan
design, which has proven to be the most powerful DFT technique ever invented,
allowed the transformation of sequential circuit testing into combinational circuit
testing and has since become an industry standard.

In this chapter, we have presented a comprehensive discussion of scan design.
This included scan cell designs, scan architectures, scan design rules, and a typical
scan design flow. The RTL DFT techniques that include RTL testability analysis
and RTL design for testability were briefly touched upon; these techniques are used
to guide testability enhancement and enable DFT integration at the RTL. Finally,
we examined promising random-access scan architecture along with a number of
special-purpose scan designs, hoping to shed some light on future DFT research.

As we continue to move towards even smaller geometries, new design and test
challenges have started to evolve. Novel and advanced DFT architectures will be
required to further reduce test power, test data volume, and test application time.
We anticipate that advanced at-speed scan and logic BIST architectures [Wang
2005b], low-power scan and logic BIST architectures [Girard 2002] [Wen 2005],
and novel error-resilient and error-tolerant architectures [Breuer 2004] will be of
growing importance in the coming decades to help us cope with the physical failures
of the nanometer design era.

2.11 EXERCISES

2.1 (Testability Analysis) Calculate the SCOAP controllability and observability
measures for a three-input XOR gate and for its NAND-NOR implementation.

2.2 (Testability Analysis) Use the rules given in Tables 2.3 and 2.4 to calculate
the probability-based testability measures for a three-input XNOR gate and
for its NAND-NOR implementation. Assume that the probability-based con-
trollability values at all primary inputs and the probability-based observability
value at the primary output are 0.5 and 1, respectively.

2.3 (Testability Analysis) Solve Problem 2.2 again for the full-adder circuit shown
in Figure 2.1.

2.4 (Testability Analysis) Calculate the combinational observability of input a;
at output s, denoted by O(a;, s;), where k > i, for the n-bit ripple-carry adder
shown in Figure 2.4.

2.5 (Ad Hoc Technique) Use an example to show why a combinational feedback
loop in a combinational circuit can cause low testability.
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(Test Point Insertion) Show an implementation where a single observation
point is used to observe the three low-observability nodes A, B, and C in
Figure 2.5 using XOR gates.

(Clocked-Scan Cell) Show a possible gate-level implementation of the
clocked-scan cell shown in Figure 2.11a.

(LSSD Scan Cell) Show a possible CMOS implementation of the LSSD scan
cell shown in Figure 2.12a.

(Full-Scan Design) Calculate the number of clock cycles required for testing
a full-scan design with # test vectors. Assume that the full-scan design has m
scan chains, each having the same length L, and that scan testing is conducted
in the way shown in Figure 2.14b.

(Full-Scan Design) Explain the main differences between an LSSD single-
latch design and an LSSD double-latch design.

(Random-Access Scan) Assume that a sequential circuit with n storage ele-
ments has been reconfigured as a full-scan design as shown in Figure 2.14a
and a random-access scan design as shown in Figure 2.19. In addition, assume
that the full-scan circuit has m balanced scan chains and that a test vector
v; is currently in the scan cells of both scan designs. Now consider the appli-
cation of the next test vector v, ;. Assume that v; and v, ; are different in d
bits. Calculate the number of clock cycles required for applying v;,; to the
full-scan design and the random-access scan design, respectively.

(Combinational Feedback Loop) Show an algorithm that checks whether a
sequential circuit contains combinational feedback loops.

(Lock-Up Latch) Suppose that a scan chain is configured as SI — SFF; —
SFF, — SFF; — SFF, — SFF; — SO, where SFF, through SFF are muxed-D
scan cells, and SI and SO are the scan input pin and scan output pin, respec-
tively. Suppose that this scan chain fails scan shift verification in which
the flush test sequence <t,t,t5t4t5>=<01010> is applied but the response
sequence is < #1375 >=< 01100 >. Identify the scan flip-flops that may
have caused this failure, and show how to fix this problem by using a
lock-up latch.

(Lock-Up Latch) A scan chain may contain both positive-edge-triggered and
negative-edge-triggered muxed-D scan cells. If, by accident, all positive-edge-
triggered scan flip-flops are placed before all negative-edge-triggered muxed-D
scan cells, show how to stitch them into one single scan chain. (Hint: Positive-
edge-triggered muxed-D scan cells and negative-edge-triggered muxed-D scan
cells should be placed in two separate sections.)

(Lock-Up Latch) Refer to Figure 2.30. The scheme works only when the
clock skew between CK; and CK, is less than the width (duty cycle) of the
clock pulse. If CK, is delayed more than the duty cycle of CK; (i.e., CK; and
CK, become nonoverlapping), show whether or not it is possible to stitch the
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two cross-clock-domain scan cells into one single scan chain using a lock-up
latch. If not, can it be done using a lock-up flip-flop instead?

(Scan Stitching) Use examples to show why a scan chain may not be able to
perform the shift operation properly if two neighboring scan cells in the scan
chain are too close to or too far from each other. Also describe how to solve
these problems.

(Test Signal) Describe the difference between the test mode signal TM and
the scan enable signal SE used in scan testing.

(Clock Grouping) Show an algorithm to find the smallest number of clock
groups in clocking grouping.

(RTL Testability Enhancement) Read the following Verilog HDL code and
draw its schematic. Then determine if there is any scan design rule violation.
If there is any violation, modify the RTL code to fix the problem, then draw
the schematic of the modified RTL code.

reg [3:0] tri_en;
always @(posedge clk)

begin
case (bus_sel)
0: tri_en[0] = 1'b1;

1: tri_en[1] = 1'b1;

2: tri_en[2] = 1'b1;

3: tri_en[3] = 1'b1;

endcase
end
assign dbus = (tri_en[0])? dl : 8'bz;
assign dbus = (tri_en[1])? d2 : 8'bz;
assign dbus = (tri_en[2])? d3 : 8'bz;
assign dbus = (tri_en[3])? d4 : 8'bz;

& %, (A Design Practice) Use the scan design rule checking programs
@f«; and user’s manuals contained on the companion Web site
M, @\éE to show if you can detect any asynchronous set/reset signal

evier.cO violations and bus contention. Try to redesign a Verilog circuit
to include such violations. Then, fix the violations by hand, and see whether
the problems disappear.

S\009

& %, (A Design Practice) Use the scan synthesis programs and user’s
5. @f«; manuals contained on the companion Web site to convert the two
%@ s ISCAS-1989 benchmark circuits s27 and s38417 [Brglez 1989]

Sevier.co® into scan designs. Perform scan extraction and then run Verilog
flush tests and broadside-load tests on the scan designs to verify whether the
generated testbenches pass Verilog simulation.
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ABOUT THIS CHAPTER

Simulation is a powerful set of techniques that are used heavily in digital circuit
verification, test development, design debug, and diagnosis. During the design stage,
logic simulation is performed to help verify whether the design meets its speci-
fications and contains any design errors. It also helps locate these design errors
that escape to fabrication during design debug. In test development, faulty circuit
behavior is simulated with a set of test patterns to assess the pattern quality and
guide further pattern development. Simulation of faulty circuits is referred to as
fault simulation and is also used during fault diagnosis, where test results are used
to locate manufacturing defects within the hardware.

This chapter begins with a discussion of logic simulation. After an introduction
to the logic circuit models, the popular compiled-code and event-driven logic
simulation techniques are described. This is followed by a description of hazards,
the undesirable transient pulses (glitches) that can occur in circuits, what causes
them, and how they can be detected during logic simulation. The second half of the
chapter discusses fault simulation. Although fault simulation is rooted in logic sim-
ulation, many techniques have been developed to quickly simulate all possible faulty
behaviors. A discussion of the serial, parallel, deductive, concurrent, and differ-
ential fault simulation techniques is followed by qualitative comparisons between
their advantages and drawbacks. The chapter concludes with alternative techniques
to fault simulation. These techniques trade accuracy for reduced execution time
which is crucial for managing the complexity of large designs. By working through
this chapter, the reader will learn about the major logic and fault simulation tech-
niques. This background will be valuable in selecting the simulation methodology
that best meets the design needs.



106 VLSI Test Principles and Architectures

3.1 INTRODUCTION

Simulation is the process of predicting the behavior of a circuit design before
it is physically built. For digital circuits, simulation serves dual purposes. First,
during the design stage, logic simulation helps the designer verify that the design
conforms to the functional specifications. Second, during test development, fault
simulation is used to simulate faulty circuits. (For this reason, logic simulation
is generally referred to as fault-free simulation.) Given a set of test patterns, fault
simulation determines its efficiency in detecting the modeled faults of interest.
Furthermore, fault simulation is also an important component of automatic test
pattern generator (ATPG) programs.

3.1.1 Logic Simulation for Design Verification

The main application of logic simulation is design verification, the process of
verifying the correctness of a digital design prior to its physical realization in the
form of silicon, a printed circuit board (PCB), or even a system. To manage growing
design complexity, logic simulation or design verification is generally performed at
each design stage, ranging from the behavioral down to the switch level. During each
design stage, the design is described in a suitable description language that captures
the required functional specification for fulfilling the design goal of that stage.

In general, design verification begins at the behavioral level or electronic system
level (ESL). At this level, the behavioral model of the target design is described
in ESL languages such as C/C++, SystemC [SystemC 2006], and SystemVerilog
[SystemVerilog 2006]. Once the behavioral model has been verified to an accept-
able confidence level, the verification process moves to the register-transfer level
(RTL) design stage. The circuit at this stage is described in hardware descrip-
tion languages (HDLs) (e.g., Verilog [IEEE 1463-2001] [Thomas 2002] and VHDL
[TEEE 1076-2002]), in terms of blocks such as registers, counters, data process-
ing units, and controllers, as well as the data/control flow between these blocks.
Because ESL/RTL verification usually does not involve detailed timing analysis,
design verification of the ESL or RTL is also referred to as functional verification
[Wile 2005].

Logic/scan synthesis comes into play after the RTL design stage. The gate-
level netlist of the RTL design that includes scan cells is synthesized from logic
elements provided in a cell library. For high-performance designs, the switch-level
model may be employed for the timing-critical portions. A switch-level network is
described as the interconnection of MOS switches. Finally, at the transistor level,
the circuit is described as interconnections of devices such as transistors, resistors,
and capacitors. The transistor-level description provides the most accurate model
for the design under development, but transistor-level simulation is much slower
than gate-level simulation. Thus, transistor-level simulation is usually only used
for characterizing cell libraries, including SRAMs and DRAMs. For digital system
designs, in general, logic simulation at the gate level suffices.
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Logic simulation for design verification.

The flow of using logic simulation for digital circuit design verification is shown
in Figure 3.1. The functional specification documents the required functionality
and performance for the target design. During each design stage, a corresponding
circuit description that contains ESL code for the behavioral design, HDL code for
the RTL design, a netlist for the gate-level design, or SPICE models for the switch-
and transistor-level design is generated in conformance with the given specification.
To ensure conformance, verification testbenches consisting of a set of input stimuli
and expected output responses are created. The logic simulator then takes the circuit
description and the input stimuli as inputs and produces the simulated responses.
Any discrepancy between the simulated and expected responses (detected by the
response analysis process) indicates the existence of a design bug. The circuit is
then redesigned or modified until no more design errors exist. The design process
then advances to the next design stage.

3.1.2 Fault Simulation for Test and Diagnosis

The major difference between logic simulation and fault simulation lies in the
nature of the nonidealities they deal with. Logic simulation is intended for iden-
tifying design errors using the given specifications or a known good design as
the reference. Design errors may be introduced by human designers or EDA tools
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and should be caught prior to physical implementation. Fault simulation, on the
other hand, is concerned with the behavior of fabricated circuits as a consequence
of inevitable fabrication process imperfections. Manufacturing defects (e.g., wire
shorts and opens), if present, may cause the circuits to behave differently from the
expected behavior. Fault simulation generally assumes that the design is function-
ally correct.

The capability of fault simulation to predict the faulty circuit behavior is of great
importance for test and diagnosis. First, fault simulation rates the effectiveness of
a set of test patterns in detecting manufacturing defects. The quality of a test set is
expressed in terms of fault coverage, the percentage of modeled faults that causes
the design to exhibit observable erroneous responses if the test set is applied. In
practice, the designer employs the fault simulator to evaluate the fault coverage
of a set of input stimuli (test vectors or test patterns) with respect to the modeled
faults of interest. Because fault simulation concerns the fault coverage of a test set
rather than the detection of design bugs, it is also termed fault grading. Low fault
coverage test patterns will jeopardize the manufacturing test quality and eventu-
ally lead to unacceptable field returns from customers. Second, fault simulation
helps identify undetected faults which is especially important when the achieved
fault coverage is unacceptable. In this case, either the designer or the ATPG has
to generate additional test vectors to improve the fault coverage (i.e., to detect
the undetected faults). Third, fault simulation allows one to compress the test set
without sacrificing fault coverage. As part of the test compaction process, fault
simulation identifies redundant test patterns, which are discarded with no negative
impact on the fault coverage. With the above capabilities and applications, fault
simulation is one of the crucial components of ATPG. In fact, implementation of
an ATPG program usually starts with the fault simulator. Finally, fault simulation
assists fault diagnosis, which determines the type and location of faults that best
explain the faulty circuit behavior of the device under diagnosis. The fault simu-
lation results are compared against the observed circuit responses to identify the
most likely faults. The fault type and location information can then be used as a
starting point for locating the defects that cause the circuit malfunction.

Although fault simulation can also be used to fault-grade analog and mixed-signal
circuits, this chapter will only focus on the most popular fault simulation techniques
for digital circuits. Readers interested in analog and mixed-signal testing should
refer to Chapter 11.

3.2 SIMULATION MODELS

In this section, we discuss the gate-level circuit simulation models for combina-
tional and sequential networks, which have widespread acceptance in the integrated
circuit testing community. Gate-level circuit descriptions contain sufficient circuit
structure information necessary to capture the effects of many realistic manufac-
turing defects. On the other hand, the abstraction level of gate-level models is high
enough to permit development of efficient simulation techniques.
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The gate-level model of the combinational circuit N.

3.2.1 Gate-Level Network

A gate-level network is described as the interconnections of logic gates, which are
circuit elements that realize Boolean operations or expressions. The available gates
to realize a Boolean expression range from the standard gates (AND, OR, NOT,
NAND, and NOR) to complex gates such as XOR and XNOR. For example, the
combinational circuit N! in Figure 3.2 is composed of an OR gate (G,), an AND
gate (G,), an inverter (G;), and a NOR gate (G,). The Boolean expression associated
with the network can be obtained after a few Boolean algebraic manipulations?:

K=(A-E+E)
=(A+EY
=A-(B+C)

3.2.1.1 Sequential Circuits

Most logic designs are sequential circuits, which differ from combinational
circuits in that their outputs depend on both the current and past input values; that
is, they have memories. Sequential circuits are divided into two categories: syn-
chronous and asynchronous. Here, we limit our discussion to synchronous circuits
due to their widespread acceptance.

Figure 3.3 illustrates the Huffman model of a synchronous sequential circuit.
The sequential circuit is comprised of two parts: the combinational logic and the
flip-flops synchronized by a common clock signal. The inputs to the combinational
logic consist of the primary inputs (PIs) x,, x,,..., x, and the flip-flop outputs
Y1, ¥2,- - -, ¥;, also called the pseudo primary inputs (PPIs) to the combinational
logic. The outputs are comprised of the primary outputs (POs) z,, z,,. .., z,, and
the flip-flop inputs Y;, Y,, ..., Y}, also called the pseudo primary outputs (PPOs)
to the combinational logic. Assuming that the flip-flops are edge triggered, upon

! Circuit N will be the example network throughout this chapter, unless specifically mentioned.
2 The three basic Boolean operations (i.e., AND, OR, and NOT) are represented by the multiplication
(), addition (+), and prime (') operators, respectively.
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The Huffman model of a sequential circuit.

the active clock transition the states of all the flip-flops are updated according to
the PPO values at that time and the flip-flop characteristic functions (e.g., v, =Y;
for a D flip-flop).

In the gate-level description, a flip-flop may be modeled as a functional block or
as the interconnections of logic gates. Figure 3.4 shows the NAND implementation
of the positive-edge-triggered D flip-flop and its functional symbol. Besides data (D)
and clock (Clock) inputs, the D flip-flop also has active low asynchronous preset
(PresetB) and clear (ClearB) inputs. Its outputs are the uncomplemented (Q) and
complemented (OB) data.

3.2.2 Logic Symbols

The basic mathematics for most digital systems is the two-valued Boolean algebra
(referred to as Boolean algebra hereafter for convenience). In Boolean algebra, a
variable can assume only one of the two values, true or false, which are represented
by the two symbols “1” and “0,” respectively. Note that “1” and “0” here do not
represent numerical quantities. Physical representations of the two symbols depend
on the logic family of choice. Consider the most popular CMOS logic as an example;
the two symbols “1” and “0” represent two distinct voltage levels, V,; and ground,?
respectively. Whether a signal’s value is 1 or 0 depends on which voltage source it
is connected to.*

3 Assume that positive logic is used.
4 In the following discussion, it is assumed that the CMOS logic family is chosen.
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Positive-edge-triggered D flip-flop.

In addition to 1 and 0, logic simulators often include two more symbols:
u (unknown) and Z (high-impedance); the former represents the uncertain circuit
behavior, and the latter helps resolve the behavior of tristate logic. For cases when
0, 1, u, and Z are insufficient to meet the required simulation accuracy, intermediate
logic states that incorporate both value and strength may be utilized.

3.2.2.1 Unknown State u

Almost all practical digital circuits contain memory elements (e.g., flip-flops and
memories) to store the circuit state; however, when these circuits are powered up,
the initial states of their memory elements are usually unknown. To handle such
situations, the logic symbol u is introduced to indicate an unknown logic value. By
associating u# with a signal, we mean that the signal is 1 or 0, but we are not sure
which one is the actual value.

Basic Boolean operations for ternary logic (0, 1, and u) are straightforward.
First, the three symbols are viewed as three sets of symbols: 0 as {0}, 1 as {1}, and
u as {0, 1}. Then, the outcome of a ternary logic operation is the union of the results
obtained by applying the same operation to the elements of the sets; for example,
the result of 0-u is derived as follows:

0-u={0}-{0,1}
={0.0,0-1}
= {0, 0}
={0}

=0
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TABLE 3.1 m Basic Boolean Operations for Ternary Logic

AND | O 1 OR|0 1 w NOT | O 1 u
0 0 0 O 0 0 1 u 1 0 u
1 0 1 u 1 1 1 1
u 0 u u u u 1 wu

The input/output relationships of the three basic Boolean operations using ternary
logic are summarized in Table 3.1. From Table 3.1, one can observe that for an
AND operation, the output is determined if one of the inputs is 0. Thus, we say
that 0 is the controlling value of the AND operation. Similarly, 1 is the controlling
value of an OR operation.

Simulation based on ternary logic is pessimistic; it may report that a signal is
unknown when in fact its value can be uniquely determined as 0 or 1 [Breuer
1972]. To illustrate the information loss caused by ternary logic, the example circuit
N is redrawn in Figure 3.5. Let the input vector be ABC = 1u0. Ternary logic
simulation (Figure 3.5a) will report that the output K is unknown; however, recall
that ABC = 1u0 represents two possibilities: ABC = 100 and 110. Figure 3.5b shows
the simulation results for both cases using binary logic; K equals 0 regardless of
the value of B, be it 0 or 1. Apparently, ternary logic simulation causes information
loss in this example.

AL !
Gy
G S K
B — .
i Gy Y % u
c 0
(a) Ternary logic simulation: K=u
1
A Oorl
G,
G 0 K
B Oorl lor0 4
or
Gl G3
C Oorl
0

(b) Enumerate all possible cases (B=0 and 1): K=0

m FIGURE 3.5

Information loss caused by ternary logic.
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To resolve the problem of information loss, one would have to assign to each
flip-flop a unique unknown symbol «; and associate with u; the following rules:

NOT(u;) = u;
NOT(u;) = u;
u;-u;=0
u;+u;=1

Let us revisit the example in Figure 3.5. Based on the above rules, the output
of G; will be ' instead of u, and finally one has K = 0, the correct answer. The
problem with this approach is that signals that are affected by multiple unknown
symbols have to be expressed as Boolean expressions of u,’s. As the number of
unknown symbols grows, the required symbolic simulation becomes cumbersome.

3.2.2.2 High-Impedance State Z

Until now, the logic signal states that we have discussed are 1 and 0, indicating that
the signal is connected to either V,; or ground. (The unknown symbol indicates
uncertainty; however, the signal of interest is still 1 or 0.) In addition to 1 or 0,
tristate gates have a third, high-impedance state, denoted by logic symbol Z. Tristate
gates permit several gates to time-share a common wire, called a bus. A signal is in
the Z state if it is connected to neither V,; nor ground.

Figure 3.6 depicts a typical bus application. In this example, three bus drivers
(G4, G,, and G3) drive the bus wire y. Each driver G; is controlled by an enable
signal ¢;, and its output o, is determined as follows:

0. = xi if€l=1
i1z ife;=0

€3 € €
L
o]
: S ] Do
‘ipull-up
i 1ordown
0 b y
Xp G, >2 . S
DFF
—> P
Resolution !
Function :
03 !
X3 Gs

® FIGURE 3.6

Tristate circuits.
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That 0; = Z indicates that G; has no effect on the bus wire y, leaving the control to
other drivers.

For the bus to function correctly, there should not be more than one active
tristate control at a time. If multiple drivers are enabled and they intend to drive
the bus to the same value, the bus wire is assigned the active drivers’ output value;
however, if at least two drivers drive the bus wire to opposite binary values, a bus
conflict occurs. Such situations may cause the circuit to be permanently damaged.
Finally, if no driver is activated, the bus is in a floating state because it is not
connected to V,; or ground. A pull-up or down network that connects the bus wire
to V,; or ground via a resistor may be added to provide a default 1 or 0 logic value
(Figure 3.6); otherwise, the bus wire will retain its previous value as a result of
trapped charge in the parasitic wire capacitance.

In addition to design errors, abnormal bus states could occur during testing when
the circuit is not in its normal operating environment and may receive illegal input
sequences; for example, e, e,, and e; may come from the outputs of flip-flops fed
by mutual exclusion logic. However, during test, the flip-flops may have random
values scanned into them, producing a bus conflict.

To facilitate logic simulation of tristate buses, one may insert a resolution func-
tion into the circuit description for each bus wire (Figure 3.6). When the simulator
encounters a bus signal, the resolution function will check the outputs (and other
necessary information) of all the drivers to determine the bus signal. Depending on
the simulation requirement, the accuracy of the resolution functions varies. In the
simplest form, it may report the occurrence of a bus conflict. To achieve higher sim-
ulation accuracy, more sophisticated resolution functions utilize multiple-valued
logic systems to represent intermediate logic states.

3.2.2.3 Intermediate Logic States

To model the intermediate logic states that may occur in tristate buses, switch-
level networks, and defective circuits, logic simulators employ multiple-valued logic
systems that include symbols carrying information of not only signal values but
also strengths.

Consider the 21-valued logic system in [Miczo 2003]. Six symbols are used to
represent six distinct logic levels: strong, weak, and floating 1’s and 0’s. The strong
1 and 0 are the same as the 1 and 0 that we have been using. The weak signals, on
the other hand, drive circuit nodes with less strength and are overridden by strong
signals. Floating signals denote trapped charge and are the weakest. Besides the six
logic levels, 15 symbols are introduced to model uncertain circuit behavior. Each of
the symbols corresponds to a subrange bounded by a pair of the 6 logic levels. For
example, the subrange bounded by strong 1 and 0 denotes the most uncertainty.

3.2.3 Logic Element Evaluation

Logic element evaluation (or gate evaluation) is the process of computing the out-
put of a logic element based on its current input and state values. The choice of
evaluation technique depends on the considered logic symbols and the types and
models of the logic elements.
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3.2.3.1 Truth Tables

Using the truth table is the most straightforward way to evaluate logic elements.
Assuming only binary values, an n-input combinational logic element requires a
2"-entry truth table to store the output value with respect to all possible input
combinations. (For a sequential element, n corresponds to the number of its input
and state variables.) In practice, the truth table is stored in an array of size 2". To
access the array, the values of the n input variables are packed in a word that serves
as the index to access the array. For example, consider the array Tyayp; to store
the truth table of a three-input NAND gate. Then, the output value with respect to
input pattern 010 is obtained by:

TNAND3 [0102] = TNAND3 [2]

where the subscript 2 indicates the binary number system.

For a multivalued logic system with k symbols, the required array size for an
n-input element is calculated as follows. Let #2 be the number of bits needed to code
the k logic symbols; that is, #2 is the smallest integer such that 2" > k. The n input
values will be packed into an n2-n-bit word; therefore, the array size is 2™, although
only k" entries are needed. For example, a nine-valued logic system requires four
bits to code the nine symbols (i.e., m2 = 4). For a five-input element, an array of size
24%5 =220 s needed to store the 9° = 19,683 truth table entries. Truth-table-based
logic element evaluation techniques are fast; however, their usage is limited because
the required memory grows exponentially with respect to the number of gate inputs.

3.2.3.2 Input Scanning

Recall that the outputs of AND and OR gates (and similarly NAND and NOR gates)
can be determined if any of their inputs has a controlling value. The idea of input
scanning is to scan through the inputs and determine the corresponding output
based on the presence of the controlling and unknown values in the gate input list.

In addition to the controlling value, denoted by ¢, we need the inversion value,
denoted by i, to characterize the AND, OR, NAND, and NOR gates. The ¢ and ¢
parameters of these gates are summarized in Table 3.2. The input scanning algo-
rithm determines the gate output value according to the following rules:

1. If any of the inputs is the controlling value, the gate output is ¢ ®i.
2. Otherwise, if any of the inputs is u, the gate output is .

3. Otherwise, the gate output is ¢’ ®1i.

TABLE 3.2 m The c and / Values of Basic Gates

| ¢ i
AND 0 0
OR 1 0
NAND 0 1
NOR 1 1
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The input scanning algorithm.

The input scanning algorithm flow is depicted in Figure 3.7. The scanning process
(the shaded region) detects the existence of controlling and unknown inputs. If an
unknown input is encountered, the u_in variable is set to true. On the other hand,
once a controlling input is detected, the algorithm will exit the loop and return ¢ ®i.
If there is no controlling input, the output value depends on whether there is any
unknown input.

3.2.3.3 Input Counting

Examining the input scanning algorithm, one can observe that knowing the number
of controlling and unknown inputs is sufficient to evaluate the output of AND, OR,
NAND, and NOR gates. Based on this observation, the input counting algorithm
maintains, for each gate, the number of controlling and unknown inputs, denoted
by ¢_count and u_count, respectively. During logic simulation, the two counts are
updated if the value of any gate input changes. Consider the NAND gate as an
example. If one of its inputs switches from 0 to u, then ¢_count will be decremented
and u_count incremented. Finally, the same rules as those for the input scanning
algorithm are applied to determine the output value.

3.2.3.4 Parallel Gate Evaluation

One way to speed up logic simulation is to implement simulation concurrency on
the host computer. Because modern computers process data in the unit of a word,
usually 32- or 64-bits wide, one can store in a single word multiple copies of a
signal (with respect to different input vectors) and process them at the same time.
This is referred to as parallel simulation or bitwise parallel simulation.
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Parallel gate evaluation.

Figure 3.8 depicts how parallel simulation is realized to simulate circuit N with
binary logic on a computer with a 4-bit word. Because one bit is sufficient to
code binary logic symbols, four vectors can be stored in a word and processed
in parallel. In this example, the four input vectors to be simulated are ABC =
{(110),(010),(011),(100)}, and next to each signal is the 4-bit data word that stores
the values corresponding to the four input vectors. Bitwise logic operations are
performed to evaluate the gate outputs.

Parallel simulation is more complicated for multi-valued logic. Consider the
ternary logic for which two bits are needed to code the three symbols. One possible
coding scheme is:

vo = (00)
vy =(11)
v, = (01)

Assume that the word width of the host computer is w. For each signal, two
words, denoted by X, and X, for signal X, are allocated to store w signal values,
with X; storing the first bit of each symbol and X, storing the second bit. Under this
symbol coding and packing scheme, the AND and OR operations can be realized by
directly applying the same bitwise operation. For example, evaluation of an AND
gate with inputs A and B and output C is performed as follows:

C, = AND(A,, B,)
C2 == AND(Az, Bz)

IfA=00and B=11, then C=00.IfA=01 and B=11, then C =01. The complement
operation (say, C = A’), on the other hand, is realized by:

Cl = NOT(Az)
C, = NOT(4,)

Interchanging A, and A, ensures that the inversion of an unknown is still unknown.
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3.2.4 Timing Models

Delay is a fact of life for all electrical components, including logic gates and inter-
connection wires. In this section, we discuss the commonly used gate and wire
delay models.

3.2.4.1 Transport Delay

The transport delay refers to the time duration it takes for the effect of gate input
changes to appear at gate outputs. Several transport delay models characterize this
phenomenon from different aspects. The nominal delay model specifies the same
delay value for the output rising and falling transitions and thus is also referred to
as the transition-independent delay model. Consider the AND gate G in Figure 3.9
as an example. Here B is fixed at 1; thus, the output of G is only affected by A.
Assuming that G has a nominal delay of dy = 2 ns and A is pulsed to 1 for 1ns, the
corresponding simulation result is shown in Figure 3.9a. Using the nominal delay
model, the output waveform at F is simply a version of A delayed by 2 ns.

For cases where the rising and falling times are different (e.g., the pull-up and
pull-down transistors of the gate have different driving strengths), one may opt for
the rise/fall delay model. In Figure 3.9b, the setup is the same as that in Figure 3.9a,
except that the rise/fall delay model is employed instead; the rise and fall delays are
d.=2ns and d; = 1.5 ns, respectively. Due to the difference between the two delays,
the duration of the output pulse shrinks from 1 to 0.5 ns.

If the gate transport delay cannot be uniquely determined (e.g., due to process
variations), one may employ the min-max delay model. In the min-max delay

(a) Nominal delay A m_ 2 —»

dy=2ns

(b) Risef/fall delay A l 1 :l<—l.5—~
d,=2ns
di=1.5ns F o —2
2
(c) Min—Max delay A 4—1_5—>|<- 1 -
dnin=1ns
dmax=2ns F
< 1 =

2 —>

m FIGURE 3.9

Transport delay models.
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model, the minimum and maximum gate delays (d,,;, and d,,,,) are specified to
represent the ambiguous time interval in which the output change may occur. In
Figure 3.9¢, the minimum and maximum delays are 1 and 2 ns, respectively, and a
1.5-ns pulse is applied at A. In response to the delay uncertainty, two ambiguous
intervals (the shaded regions), corresponding to the rising and falling transitions,
are observed at output F. Within the two ambiguous intervals, the exact output
value is unknown.

Note that one may combine the min-max and rise/fall delay models to represent
more complicated delay behaviors.

3.2.4.2 Inertial Delay

The inertial delay is defined as the minimum input pulse duration necessary for the
output to switch states. Pulses shorter than the inertial delay cannot pass through
the circuit element. The inertial delay models the limited bandwidth of logic gates.
Figure 3.10 illustrates this filtering effect. Assume that the AND gate has an inertial
delay of 1.5ns and a nominal delay of 3ns. Let us fix B at 1 and apply a pulse on A.
In Figure 3.10a, the 1-ns pulse is filtered and the output remains at a constant 0.
In Figure 3.10b, the pulse is long enough (2 ns) and an output pulse is observed
3 ns later.

3.2.4.3 Wire Delay

In the past, when gate delays dominated circuit delay, the interconnection wires
were regarded as ideal conductors with no signal propagation delay. In reality,
wires are three-dimensional structures that are inherently resistive and capacitive.
Furthermore, they may interact with neighboring conductors to form mutual capac-
itance. Figure 3.11a illustrates the distributed RLC model of a metal wire. In the

o

d=15ns dy=3ns

B=1

(a) Pulse duration less than d,

A _‘4—1—»

F

(b) Pulse duration longer than d,
< o]
A - 2 3
i
F 3 2

® FIGURE 3.10

Inertial delay.
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Wire delay model.

presence of the passive components, it takes finite time, called the propagation
delay, for a signal to travel from point p to point g.

In general, wire delays are specified for each connected gate output and gate
input pair because the physical distances and thus the propagation delays between
the driver and receiver gates vary. In Figure 3.11b, the inverter output a branches
out to drive three gates. To model the wire delays associated with the three signal
paths, one may insert delay elements d,_,, d,_., and d,_; into the fanout branches.
For convenience, wire delays may also be viewed as the receiver gate input delays
and become part of the receiver gate delay model.

Thanks to the advance of integrated-circuit fabrication technology, continuous
device scaling has significantly reduced gate delays; however, wire delays do not
benefit as much from device scaling. As a result, wire delays have replaced gate
delays as the dominant performance-limiting factor. The challenge of wire delay
modeling is that accurate delay values are not available until the physical design
stage when the functional blocks are placed and signal nets are routed. Very often,
the designers have to go back to earlier design stages to fix the timing violations, a
time-consuming process.

3.2.4.4 Functional Element Delay Model

Functional elements, such as flip-flops, have more complicated behaviors than
simple logic gates and require more sophisticated timing models. In Table 3.3, the
I/O delay model of the positive-edge-triggered D flip-flop (Figure 3.4) is depicted.
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TABLE 3.3 m The D Flip-Flop I/0 Delay Model

Input Condition Present State | Outputs Delays (ns)
D Clock PresetB ClearB q Q@ Q@B | toQ to@B Comments
X X J 1 0 0 I 1.6 1.8 Asynchronous preset
X X 1 { 1 J 0 1.8 1.6 Asynchronous clear
1 0 1 1 0 0 l 2 3 Q:0—>1
0 0 1 1 1 ) 1 3 2 Q:1-0

Note: X indicates “don’t care.”

Take the asynchronous preset operations (second row) as an example. Regardless
of the Clock and D values, if the current flip-flop state (g) is 0 and ClearB remains
1, changing PresetB from 1 to 0 (denoted by the down arrow) will cause output
transitions at Q and OB after 1.6 and 1.8 ns, respectively. Besides the input-to-output
transport delay, the flip-flop timing model usually contains timing constraints, such
as setup/hold times and inertial delays for each input.

3.3 LOGIC SIMULATION

In this section, we will discuss two commonly used gate-level logic simulation
methodologies: compiled-code and event-driven. The reader should note that,
although not included in this chapter, hardware emulation and acceleration
approaches are often employed to speed up the logic simulation process, especially
for large designs.

3.3.1 Compiled-Code Simulation

The idea of compiled-code simulation is to translate the logic network into a
series of machine instructions that model the functions of the individual gates and
interconnections between them. The compiled-code simulation flow is illustrated
in Figure 3.12a. In each clock cycle, the compiled code program together with the
input pattern is executed in the host machine. The simulation results are displayed
or stored for later analysis. The code generation flow is depicted in Figure 3.12b.
Note that logic optimization and levelization are performed prior to the actual code
generation process.

3.3.1.1 Logic Optimization
The purpose of logic optimization is to enhance the simulation efficiency. A typical
optimization process consists of the following transformation [Wang 1987]:

1. Remove gate inputs that are tied to noncontrolling values (Figure 3.13a).

2. Convert a one-input gate into an inverter or buffer (Figure 3.13b).

Remove a gate with one or more inputs tied to its controlling value, and
replace the gate’s output with 1 or 0 (Figure 3.13c¢).
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4. Replace three consecutive inverters with a single one (Figure 3.13d); this case
is common in clock trees.

Replace a buffer with a single wire (Figure 3.13e).

6. Remove logic gates that drive unobservable or floating outputs.
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Because each gate corresponds to one or more statements in the compiled code,
logic optimization reduces the program size and execution time.

3.3.1.2 Logic Levelization

To avoid unnecessary computations, logic gates must be evaluated in an order such
that a gate will not be evaluated until all its driving gates have been evaluated. For
circuit N, the evaluation order:

Gl—)Gz—)G3—)G4

satisfies this requirement. For most networks, there exists more than one evaluation
order that meets the requirement; for example, for N:

G, —->G;—>G,—> G,

The logic levelization algorithm shown in Figure 3.14 can be utilized to produce
the desired gate evaluation order. At the beginning of the algorithm, all the PIs
are assigned level 0, and all the PI fanout gates are appended to the first-in/first-out
queue Q that stores the gates to be processed. While Q is non-empty, the first gate
g in Q is popped out. If all the driving gates of g are levelized and the maximum
level is [, g is assigned level [+ 1 and all of the fanout gates of g are appended
to Q; otherwise, g is put back in Q to be processed later. The levelization process
repeats until Q is empty. Note that for gates assigned the same level, their order

assign level 0 to
all Pl's

'

put all Pl fanout
gatesin Q

no ’
> .- .| Pop next gate g append g’s fanout
@pw. from Q gates to Q

1. I=maximum of
C end ) append gto Q

g's driving gate
levels
2.assignl+1ltog

® FIGURE 3.14

The logic levelization algorithm.
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TABLE 3.4 m The Levilization Process of Circuit N

Step A B c G, G, G, G, a
0 0 0 <G,, G;>
1 0 0 0 <G, G,>
2 0 0 0 1 <G, G3>
3 0 0 0 1 2 <Gj, Gy>
4 0 0 0 1 2 2 <G>
5 0 0 0 1 2 2 3 < >

of evaluation does not matter. This levelization process is also referred to as rank
ordering.

The levelization process for circuit N is shown step by step in Table 3.4. At the
beginning, PIs are assigned level 0, and their fanout gates G, and G, are appended
to Q. In step 1, G, is not ready and put back to Q because G, is not levelized yet.
In step 2, G, is assigned level 1 because it is driven by level 0 PIs only. At the end
of the process, the following orders are produced:

G, —>G,—>G;—> G,
G, —>G;—>G,—> G,

3.3.1.3 Code Generation

Depending on performance, portability, and maintainability needs, different code
generation techniques may be used [Wang 1987]. Three approaches for code gen-
eration are described below:

= Approach 1—High-level programming language source code. The net-
work to be simulated is described in a high-level programming language,
such as C. The advantage is that it is easier to debug and can be ported to
any target machine that has a C compiler. The compilation time could be a
severe limitation for fault simulators that require recompilation for each faulty
circuit.

= Approach 2—Native machine code. This approach generates the target
machine code directly without the need of compilation, which makes it a
more viable solution to fault simulation. High simulation efficiency can be
achieved if code optimization techniques are utilized to maximize the usage
of the target machine’s data registers.

= Approach 3—Interpreted code. In this approach, the target machine is a
software emulator. During simulation, the instructions are interpreted and
executed one at a time. This approach offers the best portability and main-
tainability at the cost of reduced performance.
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Shown below is the pseudo code for circuit N. In the actual implementation,
each statement is replaced with the corresponding language constructs or machine
instructions, depending on the adopted code generation approach:

while(true) do
read(A, B, C);
E<OR(B, C);
H<AND(A, E);
J<NOT(E);
K<NOR(H, J);
end

Compiled-code simulation is most effective when binary logic simulation suffices.
In such cases, machine instructions are readily available for Boolean operations (e.g.,
AND, OR, and NOT). Its main limitations include its incapability of timing modeling
and low simulation efficiency. The compiled-code simulation methodology cannot
handle gate and wire delay models. As a result, it fails to detect timing problems such
as glitches and race conditions. The low efficiency of compiled-code simulation is
because the entire network is evaluated for each input vector, despite the fact that in
general only 1 to 10% of input signals change values between consecutive vectors.

3.3.2 Event-Driven Simulation

In contrast to compiled-code simulation, event-driven simulation exhibits high
simulation efficiency by performing gate evaluations only when necessary. We will
use Figure 3.15 to illustrate the event-driven simulation concept. In this example,
two consecutive input patterns ABC = 001 and 111 are applied to circuit N and
the corresponding signal values are shown. Note that the application of the second
vector does not change the input of G;, so G5 is not evaluated for the second vector.
In event-driven simulation, the switching of a signal’s value is called an event, and
an event-driven simulator monitors the occurrences of events to determine which
gates to evaluate.

Figure 3.16 depicts the zero-delay event-driven simulation flow. (A zero-delay
simulation is one in which gates and interconnect are assumed to have zero delay.)
At the beginning of the simulation flow, the initial signal values, which may be given

0-1

A H:0-1
Gy —
~Jeo—xi0

0-1

1 E:l > 30

Signal transitions between consecutive inputs.

® FIGURE 3.15
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Zero-delay event-driven simulation.

or simply unknown, are read in and assigned. Then, a new input vector is loaded
and the primary inputs at which events occur (called active PIs) are identified. To
propagate the events toward primary outputs, gates driven by active primary inputs
are put in the event queue Q, which stores the gates to be evaluated. As long as Q
is not empty, a gate g is popped from Q and evaluated. If the output of g changes
(i.e., a new event occurs), the fanout gates of g are placed in Q. When Q becomes
empty, the simulation for the current input vector is finished, and the simulator
proceeds to process the next input vector.

Doing only the necessary work, event-driven simulation is more efficient than
compiled-code simulation. Besides simulation efficiency, the biggest advantage of
event-driven simulation is its capability to simulate any delay model.

3.3.2.1 Nominal-Delay Event-Driven Simulation

The scheduler is an important component of an event-drive simulator. It keeps
track of event occurrences and schedules the necessary gate evaluations. For zero-
delay simulation, the event queue is a good enough scheduler because timing is not
considered. For nominal-delay simulation, however, a more sophisticated scheduler
is required to determine not only which gates to evaluate but also when to evaluate
them. Because events must be evaluated in chronological order, the scheduler is
implemented as a priority queue.

Figure 3.17 depicts one possible priority queue implementation for a nominal
delay event-driven simulator. In the priority queue, the vertical list is an ordered
list that stores the time stamps when events occur. Attached to each time stamp
t; is a horizontal list of events that occur at time 7. During simulation, a new
event that will occur at time z; is appended to the event list of time stamp ¢,. For



Logic and Fault Simulation 127

—
s
2

<

o
-
<
+
»
<
@4

P M——

P—

® FIGURE 3.17

Priority queue event scheduler.

example, in Figure 3.17, the value of signal w will switch to v} at ¢;. If ¢; is not in
the time stamp list yet, the scheduler will first place it in the list according to the
chronological order.

For the priority queue scheduler in Figure 3.17, the time needed to locate a time
stamp to insert an event grows with the circuit size. To improve the event scheduler
efficiency, one may use, instead of a linked list, an array of evenly spaced time
stamps. Although some entries in the array may have empty event lists, the overall
search time is reduced because the target time stamp can be indexed by its value.
Further enhancement is possible with the concept of timing wheel [Ulrich 1969].
Let the time resolution be one time unit and the array size M. A time stamp that is
d time units ahead of current simulation time (with array index 7) is stored in the
array and indexed by (i +d) mod® M if d is less than M; otherwise, it is stored in
an overflow remote event list similar to that is shown in Figure 3.17. Remote event
lists are brought into the timing wheel once their time stamps are within M — 1
time units from current simulation time.

A two-pass strategy for nominal delay event-driven simulation is depicted in
Figure 3.18. When there are still future time stamps to process, the event list Ly of
next time stamp ¢ is retrieved. Ly is processed in a two-pass manner. In pass one
(the left shaded box), the simulator determines the set of gates to be evaluated. The
notation (g, v;) indicates that the output of gate g is to become v;. For each event
(g, v;), if vg is the same as g’s current value v,, this event is false and is discarded.
On the other hand, if v; #v, (ie., (g, vg+) is a valid event), then v, is updated to vg,
and the fanout gates of g are appended to the activity list L,. In the second pass
(the right shaded box), gates are evaluated and new events are scheduled. While the
activity list L, is non-empty, a gate g is retrieved and evaluated. Let the evaluation
result be v. The scheduler will schedule the new event (g, v}) at time stamp ¢ +
delay(g), where delay(g) denotes the nominal delay of gate g. The two-pass strategy
avoids repeated evaluation of gates with events on multiple inputs.

5 “mod” denotes modulo operation. The array is referred to as the timing wheel due to the modulo-M-

induced circular structure.
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Two-pass event-driven simulation strategy.

In the following, we will use circuit N to demonstrate the two-pass event-driven
strategy. In this example, the nominal delays for G, G,, G;, and G, are 8, 8, 4,
and 6 ns, respectively, and there are four input events (see Figure 3.19): (4, 1, 0),
(C,0,2),(B,0,4), and (4, 0, 8), where the notation (w, v/, t) represents the event
that signal w switches to v/, at time ¢. The simulation progress is shown in Table 3.5.
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Flow of events and voided events.



Logic and Fault Simulation 129

TABLE 3.5 m Two-Pass Event-Driven Simulation

Time Lg L, Scheduled Events
0 {(A, 1)} {G,} {(H, 1, 8)}
2 {(c, 0)} {G;} {(E, 1, 10)}
4 {(B, 0)} {G;} {(E, 0, 12)}
8 {(A, 0), (H, 1)} {G,, G,} | {(H,O0, 16), (K, O, 14)}
10 {(E, 1)}
12 {(E, O)} {G,, G5} | {(H, 0, 20),(, 1, 16)}
14 {(K, 0)}
16 {(H, 0), (4, 1)} {G,} {(K, 0, 22)}
20 {(H, 0)}
22 {(K, 0)}

At time 0, there is only one primary input event (A, 1). Because A drives G,, G,
is added to activity list L,. Evaluation of G, returns H = 1; therefore, the event
(H, 1) is scheduled at time 8 (i.e., 8 ns, the delay of G, after the current time.) At
time stamps 2 and 4, the two input events at C and B are processed in the same
way. There are two events at time 8: the input event (4, 0) and the scheduled event
(H, 1) from time stamp 0. As both events are valid, the two affected gates, G, and
G,, are put in L, for evaluation. The corresponding events (H, 0) and (K, 0) are
scheduled at time 16 and 14, respectively. Note that the event (E, 1) at time 10 is
false because it does not cause a signal transition; therefore, no gate evaluation is
performed.

In Figure 3.19, the detailed signal waveforms are drawn to illustrate the flow
of events and the unnecessarily scheduled false events: (E, 1, 10), (H, 0, 20), and
(K, 0, 22). One way to avoid false events is to compare the gate evaluation result
with the last scheduled value of that gate. A new event is scheduled only if the two
values differ.

3.3.3 Compiled-Code versus Event-Driven Simulation

Compiled-code and event-driven simulation each have their advantages and dis-
advantages. Compiled-code simulation is good for cycle-based simulation, where
only the circuit behavior at the end of each clock cycle is of interest and zero-delay
simulation can be used. Compiled-code simulation is also good for hiding the details
of a simulation model, such as a processor core. Compiled-code simulation is also
good when the circuit activity is high or when bitwise parallel simulation is used.
The overhead of compilation restricts compiled-code simulation to applications
where a large number of input vectors will be simulated. Event-driven simulation is
the best approach for implementing general delay models, and detecting hazards.
It is also the best approach for circuits with low activity, such as low-power circuits
that employ clock gating. Event-driven simulation is also the best approach dur-
ing circuit debug, when frequent edit-simulate-debug cycles occur and simulation
startup time is important.
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3.3.4 Hazards

Because of the difference in delays along reconvergent signal paths, input transi-
tions may cause unwanted transient pulses or glitches, called hazards, to appear
at internal signals or primary outputs. We will use circuit N to illustrate the cause
of hazards. In this example, the inverter has a nominal delay of 3 ns, and the other
gates have nominal delays of 2 ns. At first, the input vector to circuit N is ABC =110
and the output value is K = 0. After circuit N stabilizes, the second input vector
ABC =100 is applied. Without considering the gate delays, the simulator will report
that K remains unchanged; however, as shown in Figure 3.20, a delay-aware simu-
lator will reveal the existence of a spurious one pulse at K, called a static 0-hazard.

Hazards are divided into two categories: static and dynamic. A static hazard
refers to the transient pulse on a signal line whose static value does not change.
Depending on what the signal’s static value is, a static hazard may be a static
1-hazard or a static 0-hazard. A dynamic hazard, on the other hand, refers to
the transient pulse during a 0-to-1 or 1-to-0 transition. Figure 3.21 illustrates the
possible outputs of a network with hazards. In the figures, only one hazard pulse
is shown, but in general there can be multiple pulses. The presence of hazards may
cause a sequential network to malfunction. Following the above example, if the

= FIGURE 3.20
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Types of hazards.
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output signal K is connected to the active high clear input of a flip-flop, the flip-flop
may be erroneously cleared by the 1 spike.

Hazard detection is straightforward if the network timing information is avail-
able and supported by the simulator; however, the accuracy of this approach suffers
from gate delay deviations caused by process variations. In the following, we dis-
cuss multivalued logic-based hazard detection techniques that perform worst-case
hazard analysis regardless of the timing model.

3.3.4.1 Static Hazard Detection

Recall that hazards are caused by the difference of delays associated with recon-
vergent paths (e.g., E—~ H — K and E — J — K in circuit N). (The event flow
corresponding to the two paths are shown in Figure 3.20.) One must therefore ana-
lyze the transient behavior of the network for hazard detection; however, without
the correct delay information, it is impossible to predict the exact moment at which
a signal transition occurs. One solution to this difficulty is to model the network’s
transient behavior by associating an uncertainty interval to each input signal transi-
tion [Yoeli 1964] [Eichelberger 1965]; that is, a 0 — 1 transition becomes 0 — z — 1.
(Similarly, a 1 — 0 transition becomes 1 — 1« — 0.) Because 0u1 may be 001 or 011
(a slower and a faster transition, respectively), the added u signifies the fact that
we do not know exactly when the transition occurs.

Let VI =vjv)...v! and V2 =viv3... v? be two consecutive input vectors. The
extra input vector V* =vivj... v’ that models the transition uncertainty is
obtained in the following way:

Uospl 2
v*:{vi ifv! =v:

i T B
u ity #v

When V+ is available, the modified input sequence V!V*V? is simulated. If the 00
or lul pattern is observed at any primary output, the static hazard is detected.
Note that the above method performs a worst-case analysis independent of the
delay model.

Now, let us apply this procedure to circuit N with input sequences V! =110
and V2 = 100. Following the above procedure, one has V* = 110. Simulating the
V1V+V? sequence (using ternary logic) reports that K = 0u0; thus, a static 0-hazard
is detected in this example, which agrees with the simulation results in Figure 3.20.

Based on the same idea, a simulator may utilize the six-valued logic to detect
static hazards [Hayes 1986]. The symbols and interpretations of the six-valued logic
are listed in Table 3.6 The results of Boolean operations on the six symbols can
be obtained by applying the same operation bitwise. For example, the outcome of
AND(F,1%) is derived as follows:

AND(F,1*) = AND({1u0}, {1u1})
= {1u0}
=F
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TABLE 3.6 m Multivalued Logic for Hazard Detection

Symbol Interpretation Six-Valued Logic Eight-Valued Logic
0 Static O {000} {0000}
1 Static 1 {111} {1111}
R Rise transition {001,011}=0wu1 | {O001,0011,0111}
F Fall transition {100,110}=1w0O | {1110,1100,1000}

o* Static 0-hazard {000,010} =0w0O | {0000,0100,0010,0110}
1* Static 1-hazard {111,101}=1w¢1 | {1111,1011,1101,1001}
R* Dynamic 1-hazard {0001,0011,0101,0111}
F* Dynamic 0-hazard {1000,1010,1100,1110}

3.3.4.2 Dynamic Hazard Detection

A dynamic hazard causes an unwanted pulse to appear during a 0-to-1 or 1-to-0
transition. To detect dynamic hazards, four-bit sequences are necessary. The eight-
valued logic [Hayes 1986] that covers all the 4-bit sequences necessary for dynamic
hazard detection is shown in Table 3.6. Compared to six-valued logic, two symbols
R* and F* are added to denote the dynamic 1- and 0-hazard, respectively. The result
of a Boolean operation on the eight-valued logic symbols is the union of the results
obtained by applying the same operation to all possible sequence pairs of the two
operands. For example, the process of deriving OR(0*, F) is shown below:

0000 ] (1110 1110

or (0, F)=OR [ { 9100} 1100 L [ = 11001 _ £
0010 "] 1000 1000
0110 1010

3.4 FAULT SIMULATION

Fault simulation is a more challenging task than logic simulation due to the added
dimension of complexity; that is, the behavior of the circuit containing all the
modeled faults must be simulated. When simulating one fault at a time, the amount
of computation is approximately proportional to the circuit size, the number of
test patterns, and the number of modeled faults. Because the number of modeled
faults is roughly proportional to the circuit size, the overall time complexity of fault
simulation is O(pn?), for p test patterns and # logic gates, which becomes infeasible
for large circuits.

To improve fault simulation performance, various fault simulation techniques
have been developed. In the following sections, we restrict our discussion to the
single stuck-at fault model and illustrate the key fault simulation techniques. Before
introducing these techniques, we would like to clarify terminology. Although the
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terms “test vectors” and “test patterns” are interchangeable in most cases, for the
subject of logic simulation the term “test vectors” is preferred, because test vectors
are mostly written by human designers for design verification. For fault simulation,
on the other hand, the term “test patterns” is used, as the fault simulators frequently
work with ATPG to grade test patterns.

3.4.1 Serial Fault Simulation

Serial fault simulation is the simplest fault simulation technique. It consists of fault-
free and faulty circuit simulations. Initially, fault-free logic simulation is performed
on the original circuit to obtain the fault-free output responses. The fault-free
responses are stored and later employed to determine whether a test pattern can
detect a fault or not. After fault-free simulation, a serial fault simulator simulates
faults one at a time. For each fault, fault injection is first performed, which mod-
ifies the original circuit to mimic the circuit behavior in the presence of the fault.
Then, the faulty circuit is simulated to derive the faulty responses of the current
fault with respect to the given test patterns. This process repeats until all faults in
the fault list have been simulated.

The serial fault simulation process is demonstrated using the example circuit N.
In this example, the fault list is comprised of two faults, A stuck-at one (denoted
by f) and J stuck-at zero (denoted by g), which are depicted in Figure 3.22. Note
that, although both faults are drawn in the figure, only one fault is present at a time
under the single stuck-at fault model. The test set consists of three test patterns
(denoted by Py, P,, and P; and shown in the “Input” columns of Table 3.7).

The serial fault simulator starts from fault-free simulation. The fault-free
responses are K,,,; = {1, 1, 0} for input patterns P;, P,, and P;, respectively. After the
fault-free responses are available, fault f is processed; fault injection is achieved by
forcing A to a constant one and the obtained faulty circuit is simulated. The circuit
responses for fault f are K, = {0, 0, 0} with respect to the three input patterns.
Compared with the fault-free responses (the “Output” column in Table 3.7), it is
observed that patterns P, and P, detect fault f but pattern P; does not. After fault
f has been simulated, circuit N is restored by removing fault /. The next fault, g, is
then injected by forcing J to zero. Simulation of the resulting faulty circuit is then

f:A stuck-at 1 G

L oo
B P g:J stuck-at 0
c CLEF |3 J

An example circuit with two faults.

® FIGURE 3.22
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TABLE 3.7 m Serial Fault Simulation Results for Figure 3.22

Input Internal Output
PatternNo. | A | B | C| E| F| L | J | H|K,q| K | K
P, of1jo0| 11} 1|0]0]1 0 1
P, ofo0oj1|, 11} 1|0]0]1 0 1
P; 110/ 0, 0| 0|]O0O|]1]O0]O 0] 1

performed to obtain the faulty outputs K, = {1, 1,1} (also listed in Table 3.7). Fault
g is detected by pattern P; but not P, and P,.

In this example, nine simulation runs are performed: three fault-free and six
faulty circuit simulations. These nine simulation runs can be divided into three
simulation passes. In each simulation pass, either the fault-free or the faulty circuit
is simulated for the whole test pattern set; thus, the first simulation pass consists of
fault-free simulations for P,, P,, and P;, and the second and third passes correspond
to the faulty circuit simulations of faults f and g, respectively, for P, P,, and P;.

By careful inspection of the simulation results in Table 3.7, one can observe
that, if we are only concerned with the set of faults that is detected by the test set
{P,, P,, P,}, simulations of the faulty circuit with fault f for patterns P, and P, are
redundant because f is already detected by P,. (It is assumed that the test patterns
are simulated in the order P, P,, and then P;.) Halting simulation of detected
faults is called fault dropping. For the purpose of fault grading, fault dropping
dramatically improves fault simulation performance, as most faults are detected
after relatively few test patterns have been applied. Fault dropping, however, should
be avoided in fault diagnosis applications in which the entire fault simulation
results are usually required to facilitate the identification of the fault type and
location.

The simplified serial fault simulation flow is depicted in Figure 3.23. Prior to fault
simulation, fault collapsing is executed to reduce the size of the fault list, denoted
by F. Fault-free simulation is then performed for all test patterns to obtain the
correct responses O,,,,. The algorithm then proceeds to fault simulation. For each
fault f in F, if there exists a test pattern whose output response O, differs from that
of the corresponding good circuit O,,,,,  is removed from F, indicating that it is
detected. When all patterns have been simulated, the remaining faults in F are the
undetected faults.

The major advantage of serial fault simulation is its ease of implementation; a
regular logic simulator plus fault injection and output comparison procedures will
suffice. In addition, serial fault simulation can handle a wide range of fault models,
as long as the fault effects can be properly injected into the circuit. The major
disadvantage of serial fault simulation is its low performance. As is discussed in
the following sections, practical fault simulation techniques exploit parallelism or
similarities among the faulty circuits to speed up the fault simulation process.
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The serial fault simulation algorithm flow.

3.4.2 Parallel Fault Simulation

Similar to parallel logic simulation, fault simulation can take advantage of the
bitwise parallelism inherent in the host computer to reduce fault simulation time.
For example, in a 32-bit wide CPU, logic operations (AND, OR, or XOR) can be
performed on all 32 bits at once. There are two ways to realize bitwise parallelism
in fault simulation: parallelism in faults and parallelism in patterns. These two
approaches are referred to as parallel fault simulation and parallel pattern fault
simulation.

3.4.2.1 Parallel Fault Simulation

Parallel fault simulation was proposed as early as the 1960s [Seshu 1965]. Assuming
that binary logic is utilized, one bit is sufficient to store the logic value of a signal.
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Thus, in a host computer using w-bit wide data words, each signal is associated
with a data word of which w — 1 bits are allocated for w — 1 faulty circuits and
the remaining bit is reserved for the fault-free circuit. This way, w — 1 faulty and
one fault-free circuit can be processed in parallel using bitwise logic operations
which correspond to a speedup factor of approximately w — 1 compared to serial
fault simulation. A fault is detected if its bit value differs from that of the fault-free
circuit at any of the outputs.

We will reuse the example from serial fault simulation to illustrate the parallel
fault simulation process. Assuming that the width of a computer word is three bits,
the first bit stores the fault-free (FF) circuit response, and the second and third
bits store the faulty responses in the presence of faults f and g, respectively. The
simulation results are shown in Table 3.8. Because fault f, A stuck-at one, uses
the second bit, it is injected by forcing the second bit of the data word of signal
A to 1 during fault simulation (shown in the “A;” column with the forced value
underlined; the “A” column corresponds to the fault-free case). Similarly, the “]g”
column depicts how fault g is injected by forcing the third bit to 0.

As we have mentioned, parallel fault simulation is performed using bitwise logic
operations. For example, the logic value of signal H is obtained by a bitwise AND
operation on the data words of signals A and L (A, L, and H are circled in Table 3.8).
The faulty response of the first pattern is {1, 0, 1}. This means that fault f is detected
(the second bit) but fault g (the third bit) is not. Similarly, the outputs of P, and P,
are {1, 0, 1} and {0, 0, 1}, respectively. In this example, three simulations (in one
simulation pass) are performed. Compared to serial fault simulation, which requires
nine simulations, parallel fault simulation saves two-thirds of the simulation time.

To perform parallel fault simulation using regular parallel logic simulators, one
may inject the faults by adding extra logic gates. Figure 3.24 shows how this is
done for faults f and g in N. To inject f, a stuck-at one fault, an OR gate (G;) is

TABLE 3.8 m Parallel Fault Simulation for Figure 3.22

Input Internal Output

Al A | B|C|E|F|L|J|J|H K
FF|O|/O\|] 1|0 1| 1|f/1\|] O] O|/O 1

P, floff{1ff1]O|1]1]1|0] 0|1 0
g |O0O|\O/| 1|0 1| 1|\l 0] O0]|\O 1

FF| O] O|O|1]1]1]1]0|0]O0 1

P, flo|1|O0|1|1]1]1|0]O0]|1 0
g|O|O|O|]1l]1|1]1l0|O0|0O 1
FF|1|] 1(0|]0]0O|0O|O0O|1]1]|0O0 0

P; f 117010000 1]1]|0O 0
g|l|1|0|jO]J]O|OjO|1]0]|O 1
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® FIGURE 3.24

Fault injection for parallel fault simulation.

inserted. To force the second bit of A; to one without affecting the other two bits,
the side input of G; is set to be 010. Note that the injection of fault fdoes not affect
the fault-free circuit and the faulty circuit with fault g. Similarly, injecting fault g, a
stuck-at zero fault, is achieved by adding the AND gate G, and setting its side input
to be 110.

Note that the parallel fault simulation technique is applicable to the unit or zero
delay models only. More complicated delay models cannot be modeled because
several faults are evaluated at the same time. Furthermore, a simulation pass cannot
terminate unless all the faults in this pass are detected. For example, we cannot
drop fault f alone after simulating pattern P, because fault g is not detected yet.
Parallel fault simulation is best used for simulating the beginning of the test pattern
sequence, when a large number of faults are detected by each pattern.

3.4.2.2 Parallel-Pattern Fault Simulation

Bitwise parallelism can be used to simulate test patterns in parallel. For a host
computer with a w-bit data width, the signal values for a sequence of w test patterns
are packed into a data word. For the fault-free or faulty circuit, w test patterns can
be simulated in parallel by utilizing bitwise logic operations. This approach was
first reported in [Waicukauski 1985], in which it is called parallel-pattern single-
fault propagation (PPSFP), as one fault at a time is simulated. This approach is
especially useful for combinational circuits or full-scan sequential circuits.

In PPSFP, logic simulations on the fault-free circuit are first performed on the
first w test patterns, and the circuit outputs are recorded. Then, the faults are
simulated one at a time on these w test patterns. For each fault, the simulation
results are compared with the correct responses to determine if the fault is detected.
Simulation continues until the fault is detected or all the test patterns are simulated.
The faulty circuit is restored to its original state and the next fault is processed.
The same procedure repeats until all faults in the fault list are simulated.

The PPSFP results of the fault simulation example are shown in Table 3.9. The
“Fault-free” row lists the fault-free simulation results. Note that the three patterns
are packed into one single word and thus are evaluated simultaneously using bitwise
logic operations. The “f” row represents the simulation results with fault f injected.
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TABLE 3.9 m PPSFP for Figure 3.22

Input Internal Output
Al B| €| E| F| L J| H K
P, |0 1 0 1 1 1 0| O 1
Fault-free | p, |O | O 1 1 1 1 o O 1
P; |1 ol 0| 0] 0] O 1 0 0
P |[1 1 0 1 1 1 0| /1 0
f P, |1] O 1 1 1 1 0|1 0
P; |\1 O O 0] 0] \0O 1 0 0
P, |0 1 0 1 1 1 0| O 1
g P, 10| O 1 1 1 1 0| O 1
P; |1 ol 0l 0] 0| 0| 0| O 1

In PPSFP, faults are injected by activating rising or falling events, depending on
the stuck-at value, at the faulty signal. Thus, fault f, A stuck-at one, is injected by
activating two rising events on input A. The faulty responses are {0, 0, 0} which
indicates that fault f is detected by the first and second patterns but not the third
one. After fault f is simulated, fault f is removed by activating two falling events
on input A at patterns P, and P,. Then, fault g is injected by activating one falling
event on signal J at pattern P;. Three simulation runs are carried out.

Figure 3.25 illustrates the simplified PPSFP flow. Again, fault collapsing is first
executed to obtain the collapsed fault list F. Then, the first w patterns are simulated
on the fault free circuit in parallel and the good outputs (O,,,,) are stored. Then,
each fault f in fault list F is simulated one by one using the same w test patterns.
A fault is dropped and not simulated against the remaining test patterns if its
output response Oy is different from O,,,;. To fault simulate the next fault, the
fault effect of the current fault is removed and the next fault is injected. This
process continues until all faults are either detected or simulated against all test
patterns. If the number of test patterns is not an even multiple of the machine word
width, only part of the machine word is used when simulating this last batch of
patterns.

Parallel-pattern single-fault propagation is best suited for simulation of test pat-
terns that come later in the test sequence, where the fault drop rate per pattern is
lower. Parallel fault simulation does not work well in this situation because it can-
not terminate a simulation pass until all w — 1 faults being processed are detected.
PPSFP is not suitable for sequential circuits because the circuit state for test pattern
i in the w-bit word is dependent on the previous i — 1 patterns in the word, and this
state is not available when the patterns are processed in parallel.
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The PPSFP flowchart.

3.4.3 Deductive Fault Simulation

Deductive fault simulation [Armstrong 1972], unlike the fault simulation techniques
described above, takes a very different approach; it is based on logic reasoning
rather than simulation. For a given test pattern, deductive simulation identifies, all
at once, the faults that can be detected. Deductive fault simulation can be very fast
because only fault-free simulations have to be performed.

In deductive fault simulation, a fault list (L,) is associated with a signal x. L, is
the set of faults that causes x to differ from its fault-free value. Figure 3.26 shows
the fault list of each signal with respect to test pattern P,. Fault A/1 appears in L,
because its presence causes the value of primary input A to deviate from its correct
value of zero. Fault A/0 is not in the fault list because the value of A remains correct
when the fault A/0 is present. The fault lists for inputs B and C are derived in the
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Deductive fault simulation (P;).

same way. Based on logic reasoning, the process of deriving the fault list of a gate
output from those of the gate inputs is called fault list propagation; for example,
the fault list of gate output E is the union of the fault list of B and the E/O0 fault.
Clearly, the E/O fault should be included in L; as the correct value of E is one.
On the other hand, because the fault-free value of C is a noncontrolling value of
G,, the fault effect of each fault in Ly will propagate to E (which causes E to be 1);
therefore, all faults in Ly are propagated to L. L is not propagated to the gate
output because the other input B holds the controlling value (one) of gate G,.

Similarly, the fault list L is propagated to signals L and F. The fanout branches
do nothing but add faults L/0 and F/0 to L; and L, respectively. The fault list of gate
output H contains A/1 and H/1; the fault list of A is propagated through G, because
L is one, and the fault list of L is discarded because A is zero. Finally, the fault list
of primary output K is the union of the fault lists of the two gate inputs; that is,
Ly=L,UL,={A/1, H/1, B/0, E/O, F/0, J/1, K/0} because both gate inputs of G,
are zeros; all the fault effects at the gate inputs are propagated to the gate output.
By definition, we can conclude that pattern P, detects the seven faults in L. From
this simple example, we can see the advantage of deductive fault simulation—all
faults detected by a test pattern are obtained in one fault list propagation pass.
Note that, for ease of explanation, no fault collapsing is performed in this example.
In practice, however, the faults are collapsed before deductive fault simulation and
only the collapsed faults are considered during fault list propagation.

In Figure 3.27, the deductive fault simulation results for test pattern P, are shown.
The notable difference is that those faults previously detected by pattern P, are
dropped and not taken into account. The fault list of K indicates that one more
fault, C/0, is detected by P,. The fault simulation results for pattern P; are depicted
in Figure 3.28. Three more faults {F/1, J/0, K/1} are detected.

Figure 3.29 illustrates the deductive fault simulation flow. For each test pattern,
fault-free simulation is first performed to obtain the correct values of each signal.
Fault list propagation is then conducted. A fault is detected and removed from the
fault list if it appears in any primary output’s fault list. The same process repeats
until all test patterns are simulated or all faults are detected.
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Deductive fault simulation (P,).
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Deductive fault simulation (P).

Although in our simple example, the fault list propagation rules are demonstrated
only for two-input gates, they can be generalized to multiple input gates. Let I and
z be the set of gate inputs and the gate output, respectively. Equation 3.1 shows the
fault list propagation rule when all gate inputs hold noncontrolling values:

L= (}LEJI Li)U{Z/(cEBi)} (3.1)

In Equation 3.1, ¢ and i are the controlling and inversion values of the gate. (See
Table 3.2 for the ¢ and i values of basic gates.) Because no controlling value appears
in the gate inputs, the fault lists at the inputs are propagated to the fault list of the
gate output L, represented by the term | L;. At the same time, the correct value

el
of z is ¢ @i; therefore, the fault z stuck-at] ¢ @i, denoted by z/(c @), is added to L,.
(Recall that (c®i") =c®1i.) According to the rule, the fault list of the NOR gate G,
in Figure 3.26 is simply Ly = L, UL; U{K/0}.
For cases where at least one gate input holds the controlling value, the fault list
propagation rule is depicted in Equation 3.2, where S and I — S stand for the sets of
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Deductive fault simulation flowchart.

gate inputs that hold the controlling and noncontrolling values, respectively, and
the minus sign represents the set difference operation:

=[5~ (B )] Ve o

jeS
The term (iDS L; ) — (],G%J_S L/‘) represents the set of faults in the gate input fault
lists that will propagate to the gate output. First, a fault cannot be observed unless
it appears in every fault list of gate inputs in S, represented by the term ( L;

jeS

otherwise, some gate inputs will retain the controlling value and block the fault
effect propagation. Second, the fault lists of the noncontrolling gate inputs (i.e.,
I —S) cannot propagate to the gate output, represented by the |J L; term and
jel-s
the set difference operation, because these faults prevent the gate output from
being changed. Applying Equation 3.2 to the NOR gate G, in Figure 3.28, one has
Ly = (L; — Ly) U{K/1}; the faults in L are taken out of L, because flipping H does
not change the value of output K.

Although deductive fault simulation is efficient in that it processes all faults at
the same time, it has several limitations. The first problem is that unknown values
are not easily handled. For each unknown value, both cases must be considered
(i.e., when the unknown is a controlling or noncontrolling value). The logic rea-
soning becomes even more complicated if more than one unknown appears. See
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[Abramovici 1994] for more detailed discussions of this problem. The second prob-
lem is that deductive fault simulation is only suitable for the zero-delay timing
model, because no timing information is considered during the deductive fault
propagation process. Finally, deductive fault simulation has a potential memory
management problem. Because the size of fault lists cannot be predicted in advance,
there can be a large variation in memory requirements during algorithm execution.

3.4.4 Concurrent Fault Simulation

Because a fault only affects the logic in the fanout cone from the fault site, the
good circuit and faulty circuits typically only differ in a small region. Concur-
rent fault simulation exploits this fact and simulates only the differential parts
of the whole circuit [Ulrich 1974]. Concurrent fault simulation is essentially an
event-driven simulation with the fault-free circuit and faulty circuits simulated
altogether.

In concurrent fault simulation, every gate has a concurrent fault list, which
consists of a set of bad gates. A bad gate of gate x represents an imaginary copy
of gate x in the presence of a fault. Every bad gate contains a fault index and the
associated gate I/0 values in the presence of the corresponding fault. Initially, the
concurrent fault list of gate x contains local faults of gate x. The local faults of
gate x are faults on the inputs or outputs of gate x. As the simulation proceeds, the
concurrent fault list contains not only local faults but also faults propagated from
previous stages. Local faults of gate x remain in the concurrent fault list of gate x
until they are detected.

Figure 3.30 illustrates the concurrent simulation of the example circuit for
test pattern P,. For clear illustration, we demonstrate three faults in this exam-
ple: A stuck-at one, C stuck-at zero, and J stuck-at zero faults. The concurrent
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Concurrent fault simulation (P;).
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fault lists with bad gates in gray are drawn beside the good gates. The fault
indices are labeled in the middle of bad gates and their associated bad gate I/O
values are labeled beside their I/O pins. The fault list of G,, G,, and G; ini-
tially contains their local faults: C/0, A/1, and J/0. When we apply the first pat-
tern, three events occur in the primary inputs: # — 0 on A, u - 1 on B, and
u — 0 on C. They are good events because they happen in the good circuit.
The output of good gate G, changes from unknown to one. In the presence of fault
C/0, the output of faulty G, is the same as that of good G,. A bad gate is invisible
if its faulty output is the same as the good output. The bad gates C/0 and J/0 are
both invisible so they are not propagated to the subsequent stages.

The output of G, changes from unknown to zero. In the presence of fault A/1,
the faulty output changes from unknown to 1. Because the faulty output differs
from the good output, bad gate A/1 becomes visible. A bad gate is visible if its
faulty output is different from the good output. The visible bad gate A/1 creates
a bad event u — 1 on net H (in gray). A bad event does not occur in the good
circuit; it only occurs in the faulty circuit of the corresponding fault. A new copy
of bad gate A/1 is added to the concurrent fault list of G, because it has one input
different from the good gate. It is said that bad gate A/1 diverges from its good
gate. Finally, fault A/1 is detected because the faulty output K is different from
the good output. At this time, we could drop detected fault A/1 but we keep it for
illustration purposes.

Figure 3.31 illustrates the concurrent fault simulation for test pattern P,. Two
good events occur in this figure: 0 — 1 on C and 1 — 0 on B. The bad gate C/0, which
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Concurrent fault simulation (P,).
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was invisible in pattern P,, now becomes newly visible. The newly visible bad gate
creates a bad event—net E falls to zero, which in turn creates two divergences in
G, and G;. The former is invisible but the latter creates a bad event—net J rises
to one. Finally, the concurrent fault list of G, contains two bad gates; both faults
A/1 and C/0 are detected. Again, we keep A/1 and C/0 faults for demonstrating the
simulation of pattern P;.

For the last test pattern P, (Figure 3.32), two good events occur at primary inputs
A and C. The bad gate C/0 now becomes invisible. The bad gate C/0 is deleted from
the concurrent fault list of G;. A bad gate converges to its good gate if it is not a
local fault and its I/O values are identical to those of the good gate. Similarly, the
other bad gates of C/0 also converge to G, and G,. Note that bad gate C/0 does not
converge to G, because it is a local fault for G,. The bad gate A/1 can be examined
in the same way. For gate G5, although the faulty output of bad gate J/0 does not
change, the good event 0 — 1 on J makes bad gate J/0 newly visible. The newly
visible event (in gray) is propagated to G, and a new bad gate J/0 diverges from G,.
Eventually, the fault J/0 is detected by pattern P5.

Figure 3.33 shows a simplified concurrent fault simulation flowchart. The fault
simulator applies one pattern at a time. The concurrent fault simulation is an event-
driven simulation with both good events and bad events simulated at the same time.
The events on the gate inputs are first analyzed. A good event affects both good and
bad gates but a bad event only affects bad gates of the corresponding fault. After
the analysis, events are then executed. The diverged bad gates and converged bad
gates are added to or deleted from the fault list, respectively. Determining whether

= FIGURE 3.32

Concurrent fault simulation (P).
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Concurrent fault simulation flowchart.

a bad gate diverges or converges depends on three factors: the visibility, the bad
event, and the concurrent fault list (see [Abramovici 1994] for more details). After
the event execution, new events are computed at the gate output. If an event reaches
the primary outputs, detected faults can be removed from concurrent fault lists of
all gates. This process repeats until there are no more test patterns or no undetected
faults.

3.4.5 Differential Fault Simulation

Concurrent fault simulation constructs the state of the faulty circuit from that of
the same faulty circuit of the previous test pattern. Concurrent fault simulation has
a potential memory problem because the size of the concurrent fault list changes
at run time. In contrast, the single fault propagation technique constructs the
state of the faulty circuit from that of the good circuit. For sequential circuits,
the single fault propagation technique would require a large overhead to store
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Differential fault simulation.

the states of the good circuit. Neither of the above two techniques is good for
sequential fault simulation. Differential fault simulation combines the merits of
concurrent fault simulation and single fault propagation techniques [Cheng 1989].
The idea is to simulate in turn every faulty circuit by tracking only the difference
between a faulty circuit and the last simulated one. An event-driven simulator
can easily implement differential fault simulation with the differences injected as
events.

Figure 3.34 illustrates how differential fault simulation works. First, the first
pattern P, is simulated on the good circuit G; and the good primary outputs are
stored. Then a faulty circuit (F; ;) is simulated with fault f; injected as an event. The
first subscript indicates the fault and the second subscript indicates the pattern.
The difference of states between G, and F, ; is stored. Note that only the states of
memory elements, such as flip-flops, are stored, so the memory required is small
compared to concurrent fault simulation. If the primary outputs of F; ; and G,
are not the same, then fault f; is detected. Following F; the second faulty circuit
(F,,;) is simulated with f; removed and f, injected. Similarly, the difference of states
between F; and F, is stored. The above process continues until pattern P, has been
simulated for all faults (f; to f,,).

Following the first pattern, the state of the good circuit (G,) is restored and the
second pattern P, is applied. After the fault-free simulation, the primary outputs of
G, are stored. The state of faulty circuit F, , is restored by injecting the difference
of G, and F, ;. The fault f; is again injected as an event. The differential fault
simulation for P, is the same as that of pattern P,. Differential fault simulation goes
in the direction of the arrows in Figure 3.34: G;, F, ;, F5;, ..., F,,, ;, Giy1, Fi iy, o - o

Figure 3.35 shows a simplified flowchart for differential fault simulation. For
every test pattern, a fault-free simulation is performed first, then the faulty circuits
are simulated one after another. The states of every circuit are restored from the
last simulation. If the faulty circuit outputs are different from the good outputs, the
fault is detected and dropped. The state difference of every circuit is stored. With
fault dropping, the state difference of the dropped fault must be accumulated into
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Differential fault simulation flowchart.

the state differences of its next undetected fault. This process repeats until there
are no test patterns or no undetected faults.

The problem with differential fault simulation is that the order of events caused
by fault sites is not the same as the order of the timing of their occurrence. If the
circuit behavior depends on the gate delay of the circuit, the timing information of
every event must be included. This solution, however, can potentially require high
memory consumption.

3.4.6 Fault Detection

In the previous sections, we defined fault detection as an output value being differ-
ent from the good value. In the simple example we used to illustrate fault simulation



Logic and Fault Simulation 149

techniques, making the fault detection decision is easy because the faults are hard
detected; that is, the outputs of the fault-free and faulty circuits are either 1 or 0
and are different. In practical cases, the fault detection decision is more difficult.
For example, consider the stuck-at-zero fault that occurs at the enable input of a
tristate buffer. With its enable input forced to 0, the tristate buffer’s output is in a
floating state. It is unclear whether the fault is detected, because the logic value of
a floating signal may be the same as the correct value by accident; however, if the
fault is simulated against many test patterns, it is very likely that it will eventually be
detected. For this reason, some fault simulators regard this kind of fault as poten-
tially detected. Faults that cause the circuit to oscillate (called oscillation faults)
also complicate the fault detection decision because it is impossible to predict the
faulty circuit outputs. Finally, some faults may cause the faulty circuit behavior
to deviate significantly from the correct behavior—for example, stuck-at faults on
clock signals. Called hyperactive faults, this type of fault makes the fault simula-
tion process extremely time and memory consuming, due to the large number of
differences between the good and faulty circuit. Hyperactive faults are in general
easily detected, so they are regarded as detected without actual fault simulation, to
avoid memory explosion in the fault simulator.

3.4.7 Comparison of Fault Simulation Techniques

The reader may have realized that the major concerns of fault simulation tech-
niques are the simulation speed and the required memory. In practice, factors such
as multivalued logic simulation capability, delay model simulation capability, func-
tional model simulation compatibility, and sequential fault simulation capability
should be considered as well. Also, the choice of the most suitable fault simulation
technique depends on the system memory space, the simulation time constraint,
the presence of unknown or high-impedance states, the delay model, the circuit
characteristics (sequential or combinational), and the presence of functional level
descriptions in the circuit. In the following, we make a qualitative comparison of
the previously discussed fault simulation techniques.

In terms of simulation speed, it is apparent that serial fault simulation is the
slowest among all the techniques. Deductive fault simulation can be faster than
parallel fault simulation as their complexities are O(n?) and O(n?), respectively
[Goel 1980], where # is the number of logic gates in a circuit. There is no direct
comparison between the deductive and concurrent fault simulation techniques. It is
suspected, however, that the latter is faster than the former because concurrent fault
simulation only deals with the “active” parts of the circuit that are affected by faults.
Deductive fault simulation, in contrast, performs deduction on the entire circuit
whenever the input patterns change. Differential fault simulation is shown to be up
to twelve times faster than concurrent fault simulation and PPSFP [Cheng 1989].

Memory usage is in general not a problem for serial fault simulation because
it deals with one fault at a time. Similarly, parallel fault simulation and PPSFP
do not require much more memory than the fault-free simulation. The memory
requirement of deductive fault simulation, in contrast, can be a problem because
the fault lists are dynamically created at run time and their sizes are difficult



150 VLSI Test Principles and Architectures

to predict prior to simulation. Concurrent fault simulation has even more severe
memory problems than deductive fault simulation because the concurrent fault
list is larger than the deductive fault list. Furthermore, the I/O values of every bad
gate in concurrent fault simulation must be recorded. Differential fault simulation
relieves the memory management problem of concurrent fault simulation because
only the difference in flip-flips is stored.

When the unknown (X) or high-impedance (Z) values are present in the circuit,
multivalued fault simulation becomes necessary. Serial fault simulation has no
problem in handling multivalued fault simulation because it can be realized with
a regular logic simulator. In contrast, to exploit bitwise word parallelism, it is
more difficult for parallel fault simulation or PPSFP to handle X or Z. Deductive
fault simulation, as mentioned earlier, becomes awkward in the presence of X
and Z. In concurrent fault simulation, dealing with multivalued simulations is
straightforward because every bad gate is evaluated in the same way as in the fault-
free simulation. Finally, differential fault simulation can simulate X or Z without a
problem as it is based on event-driven simulation.

From the aspect of delay and functional modeling capability, serial fault simula-
tion does not encounter any difficulty. Parallel fault simulation and PPSFP cannot
take delay or functional models into account as they pack the information of mul-
tiple faults or test patterns into the same word and rely on bitwise logic operations.
Based on logic deduction, a deductive fault simulator can deal with neither delay
nor functional models. Being event driven, both concurrent and differential fault
simulation techniques are capable of handling functional models; however, only
the former is able to process circuit delays.

When sequential circuits are of concern, serial as well as parallel fault simulation
techniques do not have a problem. The PPSFP technique, however, is not suited
for sequential circuit simulation because a large memory space is required to store
the states of the fault-free circuit. Deductive fault simulation might get very com-
plicated because sequential circuits usually contain many unknowns. Concurrent
and differential fault simulations are able to perform sequential fault simulation
without difficulty.

Based on the above discussions, PPSFP and concurrent fault simulation tech-
niques are currently the most popular fault simulation techniques for combinational
(full-scan) circuits. On the other hand, differential and concurrent fault simulation
techniques have been widely adopted for sequential circuits. Algorithm switching
has also been employed to improve performance. Parallel fault simulation can be
used when the fault drop rate per test pattern is high, and then PPSFP is employed
when more patterns are required to drop each fault.

Even for fault simulation techniques that are efficient in time and memory, the
problems of memory explosion and long simulation time still exist as the com-
plexity of integrated circuits continues to grow. To overcome the memory prob-
lem, the multiple-pass fault simulation approach is often adopted. The idea of
multiple-pass fault simulation is to partition the faults into small groups, each of
which is simulated independently. If the faults are well partitioned, multiple-pass
fault simulation prevents the memory explosion problem. To further reduce the
fault simulation time, distributed fault simulation approaches may be employed.
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Distributed fault simulation divides the entire fault simulation into smaller tasks,
each of which is performed independently on a separate processor.

3.4.8 Alternatives to Fault Simulation

Because fault simulation is very time consuming and difficult for large circuits,
alternatives to avoid “true” fault simulation have been developed. These alternatives
require only one fault-free simulation or very few fault simulations, so the run time
is significantly reduced. The alternatives give approximate fault coverage numbers.
It should be noted that these alternatives are probably acceptable if the purpose
of fault simulation is to estimate the quality of test patterns (i.e., fault grading).
These alternatives are probably not acceptable when it comes to diagnosis. This is
because diagnosis requires exact information about which patterns detect which
faults. (Please see Chapter 7 for more detailed information about diagnostic fault
simulation.)

3.4.8.1 Toggle Coverage

Toggle coverage is a popular technique to evaluate the quality of test patterns
because it requires only one single fault-free simulation. There are two definitions
for toggling. The relaxed definition says that a net is toggled if its value has been set
to 0 and 1 (the order does not matter) during the fault-free simulation. The stringent
definition requires that the net have both a 0-to-1 transition and a 1-to-0 transition
(the order does not matter) during the fault-free simulation. Both definitions can be
used to calculate the toggle coverage. The toggle coverage is the number of toggled
nets over the number of total nets in the circuit. Please note that toggling a net does
not guarantee its fault propagation so we do not know the relationship between the
toggle coverage and the fault coverage.

3.4.8.2 Fault Sampling

The fault sampling technique was proposed to simulate only a sampled group of
faults [Butler 1974]. The real fault coverage is approximated by the simulation result
of the sampled group of faults. Fault sampling is like polling before an election. The
error of the polling depends on two factors: (1) the sample size, and (2) whether
the sample is biased or not.

Let M be the total number of faults in the circuit and K be the number of faults
detected by the test set. The true fault coverage is therefore FC = K/M. Suppose that
m is the number of sampled faults, and & is the number of sampled faults detected
in the simulation. The estimated fault coverage is fc = k/m.

Based on probability theory, the random variable k follows the hypergeometric
distribution. When M is much greater than m, random variable k can be approx-
imated by a normal random variable, of which the mean is u, = mK/M = mFC;
therefore, the mean of the simulated fault coverage is u; =, /m = FC. The standard
deviation o of fc is approximately /FC(1 —FC)/m. From the normal distribution
assumption, we know that the confidence level of the +3¢ interval is 99.7%. This
means that the probability that the mean of simulated fault coverage u, falls in the
+30 interval of the true fault coverage FC is 99.7%.
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3.4.8.3 Critical Path Tracing

Critical path tracing is another alternative to fault simulation [Abramovici 1984].
Given a test pattern ¢, net x has a critical value v if and only if the x stuck-
at v fault is detected by 7. A net that has a critical value is a critical net. The
critical path is a path that consists of nets with critical values. Tracing the crit-
ical path from PO to PI gives a list of critical nets and hence a list of detected
faults.

Critical path tracing is demonstrated in Figure 3.36. All the critical values
are circled. The primary output K is certainly critical, as any change in K is
observed. Both gate inputs H and J of gate G, are critical because flipping either
one of them would change the primary output K. It can be seen that E, F, A,
and B are all critical. Note that L is not critical, because changing L would not
change the primary output. After the critical path tracing, seven critical nets
are identified and their associated faults {A/1, H/1, B/0, E/0, F/0, J/1, K/O} are
detected.

Special attention is needed when fanout branches reconverge. Figure 3.37 shows
the example circuit for pattern P;. As is the case in pattern P,, nets K, J, and F

= FIGURE 3.36

Critical path tracing (P;).

= FIGURE 3.37

Critical path tracing (Ps).
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are critical nets; however, L and E are not critical because changing their values
does not affect the circuit output. The critical path tracing is stopped due to the
reconvergence of fanout branches L and F. Eventually, faults {F/1, J/0, K/1} are
detected. One solution to this fanout reconvergence is to partition the circuit into
fanout-free subcircuits. The detailed implementation of the critical path tracing
can be found in [Abramovici 1984]. A modified critical path tracing technique that
is linear time, exact, and complete can be found in [Wu 2005].

3.4.8.4 Statistical Fault Analysis

Instead of performing actual fault simulation, the statistical fault analysis
(STAFAN) approach proposes to use probability theory to estimate the expected
value of fault coverage [Jain 1985]. The detectability of fault f (d,) is the probability
that fault f is detected by a random pattern. STAFAN calculates the detectability
of a fault by two numbers: controllability and observability. The 1-controllability
of net x, C1(x), is the probability of setting net x to 1 by a random pattern. The
0-controllability of net x, CO(x), is the probability of setting net x to 0 by a random
pattern. STAFAN runs one fault-free simulation and keeps track of the number of
1’s and O’s of every net. After the simulation, C1(x) is the number of 1’s divided by
the number of patterns, and CO(x) is the number of 0’s divided by the number of
patterns.

The observability of net x, O(x), represents the probability that the given patterns
propagate the fault effect on net x to the primary outputs. During the fault-free sim-
ulation, STAFAN counts the number of times that every gate input is sensitized to
its gate output. The sensitization probability, S(x), is then obtained by dividing the
sensitization count of gate input x by the number of test patterns. The observability
of primary outputs is 1, because fault effects on primary outputs will certainly be
observed. The observability of a gate input x is S(x) times the observability of its
gate output. The observability of every net can be calculated from primary outputs
to primary inputs.

The observability calculation becomes complicated in the presence of fanout
branches. The lower bound of the observability of a fanout stem is the maximum
value of the observability of its fanout branches. The upper bound of a fanout stem
is the “union” of the observability of its fanout branches. This upper bound assumes
that observing the fault effect via each fanout branch is independent. For example,
the observability of a fanout stem with two branches is O(x) = O(x;) + O(x,) —
O(x,)O(x,), where x, and x, are the fanout branches of x. Finally, the observability
of a fanout stem is a linear combination of its upper bound and its lower bound.
In the presence of fanout reconvergence, the independent observation of fanout
branches is not a valid assumption.

Eventually, the detectability (d;) of the net x stuck-at zero fault is C1(x) times
O(x). The detectability of the net x stuck-at one fault is CO(x) times O(x). Given a set
of n independent patterns, the probability of detecting fault f is dff =1— (1 —dy)".
The expected fault coverage is the summation of d” of all faults in the circuit over
the number of total faults. Statistical data show that more than 91% of faults that
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have detectability higher than 0.9 are actually detected, while less than 25% of faults
that have a detectability lower than 0.1 are actually detected for single stuck-at fault
test sets.

3.5 CONCLUDING REMARKS

We have presented two fundamental subjects, logic simulation and fault simulation,
that are important for readers to design quality digital circuits. Logic simulation
checks whether the design will behave as predicted before its physical implementa-
tion is built, while fault simulation tells us in advance how effective the given test
pattern set is in detecting faults.

For logic simulation, event-driven simulation that can take timing (delay) models
and sequential circuit behavior into consideration is the technique most widely
used in commercially available logic simulators. Examples of logic simulators
include Verilog-XL, NC-Verilog (both from Cadence [Cadence 2006]), ModelSim
(from Mentor Graphics [Mentor 2006]), and VCS (from Synopsys [Synopsys 2006]).
These logic simulators can accept gate-level models as well as RTL and behav-
ioral descriptions of the circuits written in hardware description languages, such
as Verilog and VHDL, both IEEE standards. HDLs are beyond the scope of this
book but are important for digital designers to learn. More detailed descriptions
of both languages can be found in books or Web sites, such as [Palnitkar 1996],
http://www.verilog.com, and http://www.verilog.net.

For fault simulation, both event-driven simulation and compiled-code simulation
techniques can be found in commercially available electronic design automation
applications. The fault simulators can be standalone tools or can be used as an
integrated feature in the ATPG programs. As a standalone tool, concurrent fault sim-
ulation using the event-driven simulation technique is used in Verifault-XL (from
Cadence) and TurboFault and TurboScan (both from SynTest [SynTest 2006]). As
an integrated feature in ATPG, bitwise parallel simulation using the compiled-code
simulation technique is widely used in Encounter Test (from Cadence), FastScan
(from Mentor Graphics), and TetraMAX (from Synopsys).

As we move to the nanometer age, we have begun to see nanometer designs that
contain hundreds of millions of transistors. We anticipate that the semiconductor
industry will completely adopt the scan methodology for quality considerations.
As a result, it is becoming imperative that advanced techniques for both logic
simulation and fault simulation be developed to address the high-performance
and high-capacity issues, in particular, for addressing new fault models, such as
transition faults [Waicukauski 1986], path-delay faults [Schulz 1989], and bridging
faults [Li 2003]. At the same time, more innovations are needed in developing
advanced concurrent fault simulation techniques, as designs today that are based
on the scan methodology are still not 100% scan testable. Fault simulation using
functional patterns remains important in order to meet excellent quality and parts-
per-million defect level goals.
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3.6 EXERCISES

3.1 (Parallel Gate Evaluation) Consider a logic simulator with four logic symbols
(0, 1, u, and Z) that are coded as follows:

vo = (00)
vy =(11)
v, = (01)
vz =(10)

Assume that the host computer has a word width of w. To simulate w input
vectors in parallel, two words (X; and X,) are allocated for each signal X to
store the first and second bits of the logic symbol codes, respectively.
(a) Derive the gate evaluation procedures for AND, OR, and NOT operations.
(b) Derive the evaluation procedures for complex gates such as a 2-to-1 mul-
tiplexer, XOR, and tristate buffer.

Note that the simulator is based on ternary logic; therefore, Z-to-u conversions
may be necessary to convert Z inputs to u’s prior to gate evaluations.

3.2 (Timing Models) For circuit M shown in Figure 3.38, complete the following

timing diagram (Figure 3.39) with respect to each timing model given below:

(a) Nominal delay—Two-input gate, 1ns; three-input gate, 1.2ns; inverter,
0.6 ns.
Inertial delay—All gates, 0.3 ns.

(b) Rise delay—Two-input gate, 0.8 ns; three-input gate, 1 ns; inverter, 0.6 ns.
Fall delay—Two-input gate, 1 ns; three-input gate, 1.2 ns; inverter, 0.8 ns.

e
E DOH }L
o

= FIGURE 3.38

Example circuit M.
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The timing diagram.

3.3

3.4

3.5

3.6

3.7

(¢) Minimum delay—Two-input gate, 0.8 ns; three-input gate, 1ns; inverter,
0.6 ns.
Maximum delay—Two-input gate, 1 ns; three-input gate, 1.2 ns; inverter,
0.8 ns.

(Compiled-Code Simulation) Apply logic levelization on circuit M given in
Figure 3.38. Assign a level number to each gate starting from level 1 at the
primary inputs. Assume that a target machine can only support basic logic
operations using two-input AND/OR and inversion. What is the pseudo code
for circuit M if it is to be simulated in the target machine?

(Event-Driven Simulation) Redo Problem 3.2a using the nominal-delay
event-driven simulation technique. Show all events and activity lists of each
time stamp.

(Hazard Detection) Use eight-valued logic to detect static and dynamic haz-
ards in circuit M in response to an input change of ABC from {101} to {010}.

(Hazard Detection) For the circuit and test patterns given in Figure 3.40
below, determine whether there is a static or dynamic hazard, assuming there
are no faults present in the design.

(Parallel-Pattern Single-Fault Propagation) For the circuit and two given
stuck-at faults shown in Figure 3.40, use the parallel-pattern single-fault prop-
agation fault simulation technique to identify which faults can be detected by
the given test patterns.



Logic and Fault Simulation 157

e (1]

a stuck-at 0

NOBH o
3 stuck-at 1D:D

= FIGURE 3.40

Example circuit.

OwX>

— s

® FIGURE 3.41

Circuit for Problem 3.9.

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

(Parallel Fault Simulation) Repeat Problem 3.7 using parallel fault
simulation.

(Deductive Fault Simulation) Write the fault list propagation rule for the
three-input NOR gate given in Figure 3.41.

(Deductive Fault Simulation) Repeat Problem 3.7 using deductive fault
simulation.

(Concurrent Fault Simulation) Repeat Problem 3.7 using concurrent fault
simulation.

(Critical Path Tracing) For the circuit in Problem 3.7, circle all the critical
values for the three test patterns. What faults are detected?

& % (A Design Practice) Repeat Problem 3.7 using the logic simu-
s 2 . . .

g;m‘@;n;‘a lation program provided on the Web site. What are the correct
% ¢ outputs of the circuit?

& % (A Design Practice) Repeat Problem 3.7 using the fault simula-
e @ % tion program provided on the Web site. What is the fault coverage
) £ .

K ¢ of this test set?

St
Cvjer.cO

& %, (A Design Practice) For the circuit given in Problem 3.2, use any

g N@% commercially available logic simulator, such as Verilog-XL, VCS,

% © & or ModelSim, to simulate the circuit behavior. Show the correct

', \ . . . .
Hevier.co® outputs of the circuit on a waveform display. Do they agree with
your answers?
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3.16 % (A Design Practice) For the circuit given in Problem 3.7, use the
g;.«@ 2 fault simulation program (TurboFault) provided on the Web site
%, ¢ to simulate the faulty output in the presence of fault a. Is the
fault detected?

"6, \
Sevierco®
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CHAPTER 4

TEST GENERATION

Michael S. Hsiao
Virginia Tech, Blacksburg, Virginia

ABOUT THIS CHAPTER

Test generation is the task of producing an effective set of vectors that will achieve
high fault coverage for a specified fault model. While much progress has been made
over the years in automatic test pattern generation (ATPG), this problem remains
an extremely difficult one. Without powerful ATPGs, chips will increasingly depend
on design for testability (DFT) techniques to alleviate the high cost of generating
vectors. This chapter deals with the fundamental issues behind the design of an
ATPG, as well as the underlying learning mechanisms that can improve the overall
performance of ATPG.

This chapter is organized as follows. First, an overview of the problem of test
generation is given, followed by random test generation. Next, deterministic algo-
rithms for test generation for stuck-at faults are explained, including techniques that
enhance the deterministic engines such as static and dynamic learning. Simulation-
based test generation is covered next, where genetic algorithms are used to derive
intelligent vectors. Test generation for other fault models such as delay faults is
explained, including ATPG for path-delay faults and transition faults. A brief dis-
cussion on bridging faults is also included. Finally, advanced test generation topics
are briefly discussed.

4.1 INTRODUCTION

Due to the imperfect manufacturing process, defects may be introduced during
fabrication, resulting in chips that could potentially malfunction. The objective of
test generation is the task of producing a set of test vectors that will uncover any
defect in a chip. Figure 4.1 illustrates a high-level concept of test generation. In
this figure, the circuit at the top is defect free, and for any defective chip which
is functionally different from the defect-free one there must exist some input that
can differentiate the two. Generating effective test patterns efficiently for a digital
circuit is thus the goal of any automatic test pattern generation (ATPG) system.
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Defect-free Generate a vector that
Inputs can produce a logic 1
>
T /
Outputs
- —>
Defective
- X
X : Defect

= FIGURE 4.1

Conceptual view of test generation.

As this problem is extremely difficult, design for testability (DFT) methods have
been frequently used to relieve the burden on the ATPG. In this sense, a powerful
ATPG can be regarded as the holy grail in testing, with which all DFT methods
could potentially be eliminated. In other words, if the ATPG engine is capable of
delivering high-quality test patterns that achieve high fault coverages and small test
sets, DFT would no longer be necessary. This chapter thus deals with the algorithms
and inner workings of an automatic test pattern generator. Both the underlying
theory and the implementation details are covered.

As it is difficult and unrealistic to generate vectors targeting all possible defects
that could potentially occur during the manufacturing process, automatic test gen-
erators operate on an abstract representation of defects referred to as faults. The
single stuck-at fault model is one of the most popular fault models and is discussed
first in this chapter, followed by discussion of test generation for other fault models.
In addition, only a single fault is assumed to be present in the circuit to simplify
the test generation problem.

Consider the single stuck-at fault model: Any fault simply denotes that a circuit
node is tied to logic 1 or logic 0. Figure 4.2 shows a circuit with a single stuck-at
fault in which signal d is tied to logic 0 (d/0). A logic 1 must be applied from the
primary inputs of the circuit to node d if there is to be a difference between the
fault-free (or good) circuit and the circuit with the stuck-at fault present. Next, in
order to observe the effect of the fault, a logic 0 must be applied to signal ¢ so if

a stuck-at 1
) e }e

S—

m FIGURE 4.2

Example of a single stuck-at fault.
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the fault d/0 is present it can be detected at the output e. Test generation attempts
to generate test vectors for every possible fault in the circuit. In this example, in
addition to the d/0 fault, faults such asa/1, b/1, ¢/0, etc. are also targeted by the test
generator. As some of the fault in the circuit can be logically equivalent, no test can
be obtained to distinguish between them. Thus, equivalent fault collapsing is often
used to identify equivalent faults a priori in order to reduce the number of faults that
must be targeted [Abramovici 1994] [Bushnell 2000] [Tha 2003]. Subsequently, the
ATPG is only concerned with generating test vectors for each fault in the collapsed
fault list.

4.2 RANDOM TEST GENERATION

Random test generation (RTG) is one of the simplest methods for generating
vectors. Vectors are randomly generated and fault-simulated (or fault-graded) on
the circuit under test (CUT). Because no specific fault is targeted, the complexity
of RTG is low. However, the disadvantages of RTG are that the test set size may
grow to be very large and the fault coverage may not be sufficiently high, due to
difficult-to-test faults.

In RTG, logic values are randomly generated at the primary inputs, with equal
probability of assigning a logic 1 or logic 0 to each primary input. Thus, the random
vectors are uniformly distributed in the test set. Note that the random test set is
not truly random because a pseudo-random number generator is generally used.
In other words, the random test set can be repeated with the same pseudo-random
number generator. Nevertheless, the vectors generated hold the necessary statistical
properties of a random vector set.

The level of confidence one can have on a random test set T can be measured as
the probability that T can detect all the stuck-at faults in the circuit. For N random
vectors, the test quality 7,, indicates the probability that all detectable stuck-at
faults are detected by these N random vectors. Thus, the test quality of a random
test set highly depends on the circuit under test.

Consider a circuit with an eight-input AND gate (or equivalently a cone of seven
two-input AND gates), illustrated in Figure 4.3. While achieving a logic 0 at the
output of the AND gate is easy, getting a logic 1 is difficult. A logic 1 would require
all the inputs to be at logic 1. If the RTG assigns each primary input with an equal
probability of logic 0 or logic 1, the chance of getting eight logic 1’s simultaneously
would only be 0.58 = 0.0039. In other words, the AND gate output stuck-at-0 fault
would be difficult to test by the RTG. Such faults are called random-pattern
resistant faults.

As discussed earlier, the quality of a random test set depends on the underlying
circuit. More random-pattern resistant faults will more likely reduce the quality of
the random test set.

To tackle the problem of targeting random-pattern resistant faults, biasing is
required so the input vectors are no longer viewed as uniformly distributed. Consider
the same eight-input AND gate example again. If each input of the AND gate has a
much higher probability of receiving alogic 1, the probability of getting alogic 1 at the
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Two equivalent circuits.

output of the AND gate significantly increases. For example, if each input has a 75%
probability of receiving a logic 1, then getting a logic 1 at the output of the AND gate
now becomes 0.75% = 0.1001, rather than the previous 0.0039.

Determining the optimal bias values for each primary input is not an easy task.
Thus, rather than trying to obtain the optimal set of values, the objective is fre-
quently to increase the probabilities for those difficult-to-control and difficult-to-
observe nodes in the circuit. For instance, suppose a circuit has an eight-input AND
gate; any fault that requires the AND gate output equal to logic 1 for detection will
be considered difficult to test. It would then be beneficial to attempt to increase
the probability of obtaining a logic 1 at the output of this AND gate.

Another issue regarding random test generation is the number of random vectors
needed. Given a circuit with » primary inputs, there are clearly 2" possible input
vectors. One can express the probability of detecting fault f by any random vector
to be:

5

df_Zn

where T is the set of vectors that can detect fault f. Consequently, the probability
that a random vector will not detect f (i.e., f escapes a random vector) is:

Therefore, given N random vectors, the probability that none of the N vectors
detects fault f is:

eN = (1—dp)¥

In other words, the probability that at least one out of N vectors will detect fault f
is:

1—(1—dp)¥
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® FIGURE 4.4

Detection of a fault.

If the detection probability, df, for the hardest fault is known, N can be readily
computed by solving the following inequality:

1-(1—-d)"=p

where p is the probability that N vectors should detect fault f.

If the detection probability is not known, it can be computed directly from the
circuit. The detection probability of a fault is directly related to: (1) the control-
lability of the line that the fault is on, and (2) the observability of the fault-effect
to a primary output. The controllability and observability computations have been
introduced previously in the chapter on design for testability.

It is worth noting that the minimum detection probability of a detectable fault f
can be determined by the output cone in which f resides. In fact, if f is detectable,
it must be excited and propagated to at least one primary output, as illustrated in
Figure 4.4. It is clear that all the primary inputs necessary to excite / and propagate
the fault-effect must reside in the cone of the output to which f is detected. Thus,
the detection probability for f is at least (0.5)™, where m is the number of primary
inputs in the cone of the corresponding primary output. Taking this concept a step
further, the detection probability of the most difficult fault can be obtained with
the following lemma [David 1976] [Shedletsky 1977].

Lemma 1

In a combinational circuit with multiple outputs, let 12,,, be the number of primary
inputs that can lead to a primary output. Then, the detection probability for the
most difficult detectable fault, d;,, is:

dmin = (O 5)”max

Proof

The proof follows from the preceding discussion.
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4.2.1 Exhaustive Testing

If the combinational circuit has few primary inputs, exhaustive testing may be
a viable option, where every possible input vector is enumerated. This may be
superior to random test generation as RTG can produce duplicated vectors and
may miss certain ones.

In circuits where the number of primary inputs is large, exhaustive testing
becomes prohibitive. However, based on the results of Lemma I, it may be possible
to partition the circuit and only exhaust the input vectors within each cone for
each primary output. This is called pseudo-exhaustive testing. In doing so, the
number of input vectors can be drastically reduced. When enumerating the input
vectors for a given primary output cone, the values for the primary inputs that
are outside the cone are simply assigned random values. Therefore, if a circuit has
three primary outputs, each of which has a corresponding primary output cone.
Note that these three primary output cones may overlap. Let 1, n,, and n; be the
number of primary inputs corresponding to these three cones. Then the number of
pseudo-exhaustive vectors is simply at most 2"t + 2" 4 213,

4.3 THEORETICAL BACKGROUND: BOOLEAN DIFFERENCE

Consider the circuit shown in Figure 4.5. Let the target fault be the stuck-at-0 fault
on primary input y. Recall the high-level concept of test generation illustrated in
Figure 4.1, where the objective is to distinguish the fault-free circuit from the faulty
circuit. In the example circuit shown in Figure 4.5, the faulty circuit is the circuit
with y stuck at 0.

Note that the circuit output can be expressed as a Boolean formula:

f=xy+yz
Let 7 be the faulty circuit with the fault y/0 present. In other words,
f'=fy=0).

In order to distinguish the faulty circuit f’ from the fault-free counterpart f, any
input vector that can make f@&f’ = 1 would suffice. Furthermore, as the aim is test

X
y

>X%——

m FIGURE 4.5

Example circuit to illustrate the concept of Boolean difference.
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generation, the target fault must be excited. In this example, the logic value on
primary input y must be logic 1 to excite the fault y/0. Putting these two conditions
together, the following equation is obtained:

yfy=Def(y=0) =1 (4.1)

Note that f(y = 1) ®f(y = 0) indicates the exclusive-or operation on the two functions
fly = 1) and f(y = 0); it evaluates to logic 1 if and only if the two functions evaluate
to opposing values. In terms of ATPG, this is synonymous to propagating the fault
effect at node y to the primary output f. Therefore, any input vector on primary
inputs x, v, and z that can satisfy Equation (4.1) is a valid test vector for fault y/0:

y-fy=Def(y=0)=y - (x®dz)
=y (xz+xz)
=xyZ+Xyz

In this running example, the two vectors xyz = {110, 011} are candidate test vectors
for fault y/0.

Formally, f(y = 1) ®@f(y = 0) is called the Boolean difference of / with respect to
v and is often written as:

d
I _fo=nefy=0.
Y
In general, if f is a function of x, x,, . . ., x,,, then:
d _
c% =f(x1,x2, .. .,xi, .. .,xn)@f(xl,xz, .. -)xi; .. ')xn)

i
In terms of test generation, for any target fault on some fault a/v, the set of all
vectors that can propagate the fault-effect to the primary output f is then those
vectors that can satisfy:

af
da
(Note that this is independent of the polarity of the fault, whether it is stuck-at-0 or
stuck-at-1.) Next, the constraint that the fault must be excited, « set to value v, must
be added. Subsequently, the set of test vectors that can detect the fault becomes all
those input values that can satisfy the following equation:
d
(a=17)~—f=1 (4.2)
da
Consider the same circuit shown in Figure 4.5 again. Suppose the target fault is
w/0. The same analysis can be performed for this new fault. The set of test vectors
that can detect w/0 is simply:

df
= w-fw=Dafw=0)=1

1

1
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= w-(I1oxy)=1
= @) =1
= w-(x+y) =1
= wx+wy=1

Now, w can be expanded from the circuit shown in the figure to be w =¥-z. Plugging
this into the equation above gives us:

w-x+w-y=1

= yz-x+y-z-y=1
= Xyz+y-z=1
= y-z=1

Therefore, the set of vectors that can detect w/0 is {001, 101}.

4.3.1 Untestable Faults

If the target fault is untestable, it would be impossible to satisfy Equation 4.2.
Consider the circuit shown in Figure 4.6. Suppose the target fault is z/0. Then the
set of vectors that can detect z/0 are those that can satisfy:

df
“
= - (fe=1)ef(z=0)=1
= z-(ydxy)=1
=
=

=1

z:0=1
UNSATISFIABLE

In other words, there exists no input vectors that can satisfy z- o= 1, indicating
Z

that the fault z/0 is untestable.

u FIGURE 4.6

Example circuit for an untestable fault.
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4.4 DESIGNING A STUCK-AT ATPG FOR COMBINATIONAL CIRCUITS

In deterministic ATPG algorithms, there are two main tasks. The first is to excite
the target fault, and the second is to propagate the fault-effect to a primary out-
put. Because the logic values in both the fault-free and faulty circuits are needed,
composite logic values are used. For each signal in the circuit, the values v/v; are
needed, where v denotes the value for the signal in the fault-free circuit, and vy
represents the value in the corresponding faulty circuit. Whenever v =v;, v is suf-
ficient to denote the signal value. To facilitate the manipulation of such composite
values, a 5-valued algebra was proposed [Roth 1966], in which the five values are
0,1, X, D, and D; 0, 1, and X are the conventional values found in logic design
for true, false, and “don’t care.” D represents the composite logic value 1/0 and D
represents 0/1. Boolean operators such as AND, OR, NOT, XOR, etc., can work on
the 5-valued algebra as well. The simplest way to perform Boolean operations is
to represent each composite value into the v/v, form and operate on the fault-free
value first, followed by the faulty value. For example, 1 AND D is 1/1 AND 1/0.
AND-ing the fault-free values yields 1 AND 1 =1, and AND-ing the faulty values
yields 1 AND 0 = 0. So the result of the AND operation is 1/0 = D. As another
example,

DORD=1/00R 0/1
=1/1
=1
Tables 4.1, 4.2, and 4.3 show the AND, OR, and NOT operations for the 5-valued

algebra, respectively. Operations on other Boolean conjunctives can be constructed
in a similar manner.

4.4.1 A Naive ATPG Algorithm

A very simple and naive ATPG algorithm is shown in Algorithm 1, where combina-
tional circuits with fanout structures can be handled.

TABLE 4.1 m AND Operation

AND | O 1 D D X
0j0|0|0|0]|O
101 |D|D|X
D|O|D|D|O]|X
D{O/D|O|D|X
X |0 X | X|X
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TABLE 4.2 m OR Operation

OR 1 D X
0|0|1|D|D|X
11 ]|1|1]1]1
D|D|1|D|1]|X
D|D|1|1|D|x
X| X |1]x X

TABLE 4.3 m NOT Operation

NOT
01
1|0
D|D
D|D
X | X

Algorithm 1 Naive ATPG (C,f)

1: while a fault-effect of f has not propagated to a PO and all possible vector combinations have
not been tried do

2: pick a vector, v, that has not been tried;

3: fault simulate v on the circuit C with fault f;

4: end while

Note that in an ATPG, the worst-case computational complexity is exponential, as
all possible input patterns may have to be tried before a vector is found or that the
fault is determined to be undetectable. One may go about line #2 of the algorithm in
an intelligent fashion, so a vector is not simply selected indiscriminately. Whether
or not intelligence is incorporated, some mechanism is needed to account for those
attempted input vectors so no vector would be repeated. If it is possible to deduce
some knowledge during the search for the input vector, the ATPG may be able to
mark a set of solutions as tried and thus reduce the remaining search space. For
instance, after attempting a number of input vectors, this naive ATPG realizes that
any input vector with the first primary input set to logic 0 cannot possibly detect
the target fault and it can safely mark all vectors with the first primary input equal
to 0 as a tried input vector. Subsequently, only those vectors with the first primary
input set to 1 will be selected.
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In certain cases, it may not be possible for the ATPG to deduce that all vectors
with some primary input set to a given logic value definitely do not qualify to be
solution vectors. However, it may be able to make an intelligent guess that input
vectors with primary input #i set to some specific logic value are more likely to
lead to a solution. In such a case, the ATPG would make a decision on primary
input #i. Because the decision may actually be wrong, the ATPG may eventually
have to alter its decision, trying the vectors that have the opposite Boolean value
on primary input #i.

The process of making decisions and reversing decisions will result in a decision
tree. Each node in the decision tree represents a decision variable. If only two
choices are possible for each decision variable, then the decision tree is a binary
tree. However, there may be cases where multiple choices are possible in a general
search tree.

Figure 4.7 shows an example decision tree. While this figure only allows decisions
to be made at the primary inputs, in general this may not be the case. This is
used simply to allow the reader to have a clearer picture of the concept behind
decision trees. At each decision, the search space is halved. For example, if the
circuit has n primary inputs, then there is a total of 2" possible vectors in the
solution space. After a decision is made, the solution spaces under the two branches
of a decision node are disjoint. For instance, the space under the decision a =1
does not contain any vectors with a = 0. Note that the decision tree for a solution
vector may not require the ATPG to exhaustively enumerate every possible vector;
rather, it implicitly enumerates the vectors. If a solution vector exists, there must
be a path along the decision tree that leads to the solution. On the other hand, if
the fault is undetectable, every path in the decision tree would lead to no solution.

It is important to note that a fault may be detected without having made all
decisions. For example, the circuit nodes that do not play a role in exciting or prop-
agating the fault would not have to be included in the decision process. Likewise,

_.-"solution ;. solution " Jsolution™. . goution .

spacewith .~ spacewith . - spacewith. - space with .
a=0,c=0 . .7a=0,¢=1,d=0" 3=0,c=1,d=1." a=1

m FIGURE 4.7

An example decision tree.
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it may not require all decision variables before the ATPG can determine that it is
on the wrong path. For example, if a certain path already sets a value on the fault
site such that the fault is not excited, then no value combination on the remaining
decision variables can help to excite and propagate the fault. Using Figure 4.7 as an
example again, suppose the patha =0, c =1, d = 1 cannot excite the target fault a.
Then, the rest of the decision variables, b, ¢, f, ..., cannot undo the effect rendered
bya=0,c=1,d=1.

4.4.1.1 Backtracking

Whenever a conflict is encountered (i.e., a path segment leading to no solution),
the search must not continue searching along that path, but must go back to some
earlier point and re-decide on a previous decision. If only two choices are possible
for a decision variable, then some previous decision needs to be reversed, if the
other branch has not been explored before. This reversal of decision is called a
backtrack. In order to keep track of where the search spaces have been explored
and avoid repeating the search in the same spaces, the easiest mechanism is to
reverse the most recent decision made. When reversing any decision, the signal
values implied by the assignment of the previous decision variable must be undone.

Consider the decision tree illustrated in Figure 4.8 as an example. Suppose the
current decisions made so far are a =0, c =1, d =0, and this causes a conflict in
detecting the target fault. Then, the search must reverse the most recently made
decision, which is d = 0. When reversing d =0 to d = 1, all values resulted from
d = 0 must be first undone. Then, the search continues with the patha =0, ¢ =1,
d = 1. If the reversal of a decision also caused a conflict (in this case, reversing
d = 0 also caused a conflict), then it means a =0, ¢ = 1 actually cannot lead to any
solution vector that can detect the target fault. The backtracking mechanism would
then take the search to the previous decision and attempt to reverse that decision.
In the running example, it would undo the decision on d, assigning d to “don’t
care,” followed by reversing of the decision ¢ = 1 and searching the portion of the
search space under a =0, ¢ = 0. Finally, if there is no previous decision that can be
reversed, the ATPG concludes that the target fault is undetectable.

Conflict o

backtrack

= FIGURE 4.8

Backtrack on a decision.
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Technically, whenever a decision is reversed, say d =0 is reversed to d =1 as
shown in Figure 4.8, d =1 is no longer a decision; rather, it becomes an implied
value by a subset of the previous decisions made. The exact subset of decisions
that implied d = 1 can be computed by a conflict analysis [Marques-Silva 1999b].
However, the details of conflict analysis are beyond the scope of this chapter and
are thus omitted. The reader can refer to [Marques-Silva 1999b] for details of this
mechanism. In addition, intelligent conflict analysis can also allow for nonchrono-
logical backtracking.

4.4.2 A Basic ATPG Algorithm

Given a target fault g/v in a fanout-free combinational circuit C, a simple procedure
to generate a vector for the fault is shown in Algorithm 2, where JustifyFanoutFree()
and PropagateFanoutFree() are both recursive functions.

Algorithm 2 Basic Fanout Free ATPG (C, g/v)

1: initialize circuit by setting all values to X;
2: JustifyFanoutFree(C, g, v); /* excite the fault by justifying line g to v */
3: PropagateFanoutFree(C, g); /* propagate fault-effect from g to a PO */

The JustifyFanoutFree(g, v) function recursively justifies the predecessor signals
of g until all signals that need to be justified are indeed justified from the primary
inputs. The simple outline of the JustifyFanoutFree routine is listed in Algorithm 3.
In line #10 of the algorithm, controllability measures can be used to select the best
input to justify. Selecting a good gate input may help to reach a primary input
sooner.

Consider the circuit C shown in Figure 4.9. Suppose the objective is to justify
g = 1. According to the above algorithm, the following sequence of recursive calls
to JustifyFanoutFree() would have been made:

g
D@ f
C
zZ
h
d
b

= FIGURE 4.9

Example fanout-free circuit.
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Algorithm 3 JustifyFanoutFree(C, g, v)

g=v;

: if gate type of g == primary input then

return;

: else if gate type of g == AND gate then

if v==1 then
for all inputs h of g do
JustifyFanoutFree(C, h, 1);

end for
else {v == 0}

LCONTH WM

10: h = pick one input of g whose value == X;
11: JustifyFanoutFree(C, h, O);

12:  endif

13: else if gate type of g == OR gate then

14: -
15: end if

call #1: JustifyFanoutFree(C, g, 1)
call #2: JustifyFanoutFree(C, a, 1)
call #3: JustifyFanoutFree(C, f, 1)
call #5: JustifyFanoutFree(C, ¢, 0)

After these calls to JustifyFanoutFree(), abed = 1X0X is an input vector that can

justify g = 1.

Consider another circuit C shown in Figure 4.10. Note that the circuit is not
fanout-free, but the above algorithm will still work for the objective of trying to
justify the signal g = 1. According to the algorithm, the following sequence of calls
to the JustifyFanoutFree function would have been made:

call #1: JustifyFanoutFree(C, g, 1)
call #2: JustifyFanoutFree(C, a, 1)
call #3: JustifyFanoutFree(C, f, 1)
call #4: JustifyFanoutFree(C, d, 0)
call #5: JustifyFanoutFree(C, ¢, 0)

dDOf

m FIGURE 4.10

Example circuit with a fanout structure.



Test Generation 175

)

® FIGURE 4.11

Circuit with a constant circuit node.

After these five calls to JustifyFanoutFree(), abc = 1X0 is an input vector that can
justify g =1.

Note that in a fanout-free circuit, the JustifyFanoutFree() routine will always
be able to set g to the desired value v and no conflict will ever be encountered.
However, this is not always true for circuits with fanout structures. This is because
in circuits with fanout branches, two or more signals that can be traced back to the
same fanout stem are correlated, and setting arbitrary values on these correlated
signals may not always be possible. For example, in the simple circuit shown in
Figure 4.11, justifying d = 1 is impossible, as it requires both b =1 and ¢ = 1, thereby
causing a conflict on a.

Consider again the circuit shown in Figure 4.10. Suppose the objective is to
set z = 0. Based on the JustifyFanoutFree() algorithm, it would first justify both
g =0 and & = 0. Now, for justifying g = 0, suppose it picks the signal f for jus-
tifying the objective g = 0; it would eventually assign ¢ = 1 through the recursive
JustifyFanoutFre() function. Next, for justifying 2 = 0, it no longer can choose e =0
as a viable option, because choosing ¢ = 0 will eventually cause a conflict on sig-
nal c¢. In other words, a different decision has to be made for justifying # = 0.
In this case, b = 0 should be chosen. While this example is very simple, it illus-
trates the possibility of making poor decisions, causing potential backtracks in the
search. In the rest of this chapter, more discussion on avoiding conflicts will be
covered.

In the above running example, suppose the target fault is g/0, and
JustifyFanoutFree(C, g, 1) would have successfully excited the fault. With the fault
g/0 excited, the next step is to propagate the fault-effect to a primary output.
Similar to the JustifyFanoutFree() function, PropagateFanoutFree() is a recursive
function as well, where the fault-effect is propagated one gate at a time until it
reaches a primary output. Algorithm 4 illustrates the pseudo-code for one possible
implementation of the propagate function.

Again, although the PropagateFanoutFree() routine is meant for fanout-free cir-
cuits, it is sufficient for the running example. Using the PropagateFanoutFree()
function on the fault-effect D at signal g, listed in Algorithm 3, the following calls
to the JustifyFanoutFree and PropagateFanoutFree functions would have been
made:

call #1: PropagateFanoutFree(C, g)
call #2: JustifyFanoutFree(C, %, 0)
call #3: JustifyFanoutFree(C, b, 0)
call #4: PropagateFanoutFree(C, z)
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Algorithm 4 PropagateFanoutFree(C, g)

1: if g has exactly one fanout then
2:  h=fanout gate of g;
3:  if none of the inputs of h has the value of X then
4. backtrack;
5: endif
6: else {g has more than one fanout}
7:  h=pick one fanout gate of g that is unjustified;
8: end if
9: if gate type of h == AND gate then
10:  for all inputs, j, of h, such that j# ¢ do
11 if the value on j == X then
12: JustifyFanoutFree(C, j, 1);
13: end if
14:  end for
15: else if gate type of h == OR gate then
16:  forall inputs, j, of h, such that j # ¢ do
17: if the value on j == X then
18: JustifyFanoutFree(C, j, 0);
19: end if
20:  end for
21: else if gate type of h==... gate then
22: -
23: end if
24 PropagateFanoutFree(C, h);

Because the fault-effect has successfully propagated to the primary output z, the
fault g/0 is detected, with the vector abc = 100.

The reader may notice that once g/0 has been excited, it is also propagated to z as
well, because ¢ = 0 also has made % = 0. In other words, the JustifyFanoutFree(C,
h, 0) step is unnecessary. However, this is only possible if logic simulation or
implication capability is embedded in the BasicFanoutFreeATPG() algorithm. For
this discussion, it is not assumed that logic simulation is included.

Using the same circuit shown in Figure 4.10, consider the fault g/1. The Basic-
FanoutFreeATPG() algorithm will again be used to generate a test vector for this
fault. In this case, the ATPG first attempts to justify g = 0, followed by propagating
the fault-effect to z. During the justification of g = 0, the ATPG can pick either a
or f as the next signal to justify. At this point, the ATPG must make a decision.
Testability measures discussed in an earlier chapter can be used as a guide to
make more intelligent decisions. In this example, choosing a is considered to be
better than f, because choosing a requires no additional decisions to be made. Note
that testability measures only serve as a guide to decision selection; they do not
guarantee that the guidance will always lead to better decision selection.

It is important to note that in circuits with fanout structures, because the sim-
ple JustifyFanoutFree() and PropagateFanoutFree() functions described above are
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meant for fanout-free circuits, will not always be applicable as illustrated in some
of the examples above due to potential conflicts. In order to generate test vectors for
general combinational circuits, there must be mechanisms that will allow the ATPG
to avoid conflicts, as well as get out of a conflict when a conflict is encountered. To
do so, the corresponding decision tree must be constructed during the search for
a solution vector, and backtracks must be enforced for any conflict encountered.
The following sections describe a few ATPG algorithms.

4.4.3 D Algorithm

The D algorithm was proposed to tackle the generation of vectors in general com-
binational circuits [Roth 1966] [Roth 1967]. As indicated by the name of the algo-
rithm, the D algorithm tries to propagate a D or D of the target fault to a primary
output. Note that because each detectable fault can be excited, a fault-effect can
always be created. In the following discussion, propagation of the fault-effect will
take precedence over the justification of the signals. This allows for enhanced effi-
ciency of the algorithm as well as for simpler discussion.

Before proceeding to discussing the details of the D algorithm, two important
terms should be defined: the D-frontier and the J-frontier. The D-frontier consists
of all the gates in the circuit whose output value is x and a fault-effect (D or D) is
at one or more of its inputs. In order for this to occur, one or more inputs of the
gate must have a “don’t care” value. For example, at the start of the D algorithm,
for a target fault f there is exactly one D (or D) placed in the circuit corresponding
to the stuck-at fault. All other signals currently have a “don’t care” value. Thus,
the D-frontier consists of the successor gate(s) from the line with the fault /. Two
scenarios of a D-frontier are illustrated in Figure 4.12. Clearly, at any time if the
D-frontier is empty, the fault no longer can be detected. For example, consider
Figure 4.12a. If the bottom input of gate a is assigned a value of 0, the output of
gate a will become 0, and the D-frontier now becomes empty. At this time, the
search must backtrack and try a different search path.

The J-frontier consists of all the gates in the circuit whose output values are
known (can be any of the five values in the 5-valued logic) but is not justified by its
inputs. Figure 4.13 illustrates an example of a J-frontier. Thus, in order to detect
the target fault, all gates in the J-frontier must be justified; otherwise, some gates
in the J-frontier must have caused a conflict, where these gates cannot be justified
to the desired values.

Having discussed the two fundamental concepts of the D-frontier and the
J-frontier, the explanation for the D algorithm can begin. The D algorithm begins
by trying to propagate the initial D (or D) at the fault site to a primary output.
For example, in Figure 4.14, the propagation routine will set all the side inputs of
the path necessary (gates a — b — ¢) to propagate the fault-effect to the respective
noncontrolling values. These side input gates, namely x, y, and z, thus form the
J-frontier as they are not currently justified. And as the D is propagated to the
primary output, the D-frontier eventually becomes the output gate.
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(a) D-frontier contains one gate

D-frontier
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(b) D-frontier contains two gates

m FIGURE 4.12

Illustrations of D-frontier.

J-frontier

® FIGURE 4.13

Illustration of J-frontier.

Whenever there are paths to choose from in advancing the D-frontier, observ-
ability values can be used to select the corresponding gates. However, this does not
guarantee that the more observable path will definitely lead to a solution.

When a D or a D has reached a primary output, all the gates in the J-frontier must
now be justified. This is done by advancing the J-frontier backward by placing pre-
decessor gates in the J-frontier such that they justify the previous unjustified gates.
Similar to propagation of the fault-effect, whenever a conflict occurs, a backtrack
must be invoked. In addition, at each step, the D-frontier must be checked so the D
(or D) that has reached a primary output is still there. Otherwise, the search returns
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D propagates to PO

J-frontier

= FIGURE 4.14

Propagation of D- and J-frontier.

to the propagation phase and attempts to propagate the fault-effect to a primary
output again. The overall procedure for the D algorithm is shown in Algorithms 5
and 6.

Note that the above procedure has not incorporated any intelligence in the
decision-making process. In other words, sometimes it may be possible to deter-
mine that some value assignments are not justifiable, given the current circuit state.
For instance, consider the circuit fragment shown in Figure 4.15. Justifying gate
a =1 and gate b = 0 is not possible because a = 1 requires both of its inputs set to
logic 1, while b = 0 requires both of its inputs set to logic 0. Noting such conflicting
scenarios early can help to avoid future backtracks. Such knowledge can be incor-
porated into line #1 of the D-Alg-Recursion() shown in Algorithm 6. In particular,
static and dynamic implications can be used to identify such potential conflicts,
and they are used extensively to enhance the performance of the D algorithm (as

Algorithm 5 D-Algorithm(C, f)

1: initialize all gates to don’t-cares;

2: set a fault-effect (D or D) on line with fault f and insert it to the D-frontier;
3: J-frontier = ¢;

4: result = D-Alg-Recursion(C);

5: if result == success then

6: print out values at the primary inputs;
7: else

8: print fault f is untestable;

9: end if
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Algorithm 6 D-Alg-Recursion(C)

1: if there is a conflict in any assignment or D-frontier is ¢ then

return failure;

: end if

: /* first propagate the fault-effect to a PO */

: if no fault-effect has reached a PO then

while not all gates in D-frontier has been tried do
g = a gate in D-frontier that has not been tried;
set all unassigned inputs of g to non-controlling value and add them to the J-frontier;
result = D-Alg-Recursion(C);
if result == success then

11: return (success);

12: end if

13:  end while

14: return (failure);

15: end if {fault-effect has reached at least one PO}

16: if J-frontier is ¢ then

17: return (success);

18: end if

19: g = a gate in J-frontier;

20: while g has not been justified do

21: j= an unassigned input of g;

22: setj=1 and insert j=1 to J-frontier;

23: result = D-Alg-Recursion(C);

24: if result == success then

25:  return (success);

26: else try the other assignment

._.
QLN E®D

27: setj=0;
28: endif
29: end while

30: return(failure);

B
D

= FIGURE 4.15

Conflict in the justification process.

well as other ATPG algorithms). The implications of these procedures are discussed
later in this chapter.

Consider the multiplexer circuit shown in Figure 4.10. If the target fault is [
stuck-at-0, then, after initializing all gate values to x, the D algorithm places a D on
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line f. The algorithm then tries to propagate the fault-effect to z. First it will place
a =1 in the J-frontier, followed by 4 = 0 in the J-frontier. At this time, the fault-
effect has reached the primary output. Now, the ATPG tries to justify all unjustified
values in the J-frontier. Because a is a primary input, it is already justified. The
other signals in the J-frontier are f =D and 7 = 0. For f = D, d =0, thereby making
¢=0.Forh=0, either e =0 or b =0 is sufficient. Whichever one it picks, the search
process will terminate, as a solution has been found.

Consider the same multiplexer circuit (Figure 4.10) again. Suppose the target
fault now isf stuck-at-1. Following the similar discussion as the previous target fault
f/0, the algorithm initializes the circuit and places a D on f. Next, to propagate the
fault-effect to a primary output, it likewise inserts a = 1 and / = 0 into the J-frontier.
Now, the ATPG needs to justify all the gates in the J-frontier, which includes a =1,
f =D, and h = 0. Because a is a primary output, it is already justified. For f = D,
d=1. For h =0, suppose it selects e = 0. At this time, the J-frontier consists of two
gate values: d =1 and e = 0. No value assignment on ¢ can satisfy both d =1 and
e = 0; therefore, a conflict has occurred, and backtrack on the previous decision is
needed. The only decision that has been made is e =0 for & = 0, as there were two
choices possible for justifying /2 = 0. At this time, the value on e is reversed, and
b =0 is added to the J-frontier. The process continues and all gate values in the
J-frontier can be successfully justified, ending the process with the vector abc = 101.

Note that, in the above example, if some learning procedure (such as implications)
is present, the decision for 2 = 0 would not result in e = 0, because the ATPG would
have detected that ¢ = 0 would conflict with d = 1. This knowledge could potentially
improve the performance of the ATPG, which will be discussed later in this chapter.

Consider another example circuit shown in Figure 4.16. Suppose the target fault is
g/1. After circuit initialization, the D algorithm places a D on g. Now, the J-frontier
consists of g =D and the D-frontier consists of 4. In order to advance the D-frontier,
f is set to logic 1; f =1 is added to the J-frontier, and the D-frontier is now i.
Next, to propagate the fault-effect to the output, ¢ = 1 is added to the J-frontier.
At this time, the fault-effect has been propagated to the output, and the task is
to justify the signal values in the J-frontier: {g =D,f = 1,c = 1}. To justify g =D,
two choices are possible: a =0 or b =0. If a =0 is selected, it is necessary to
justify f = 1,b = 1. Finally, ¢ = 1 remains in the J-frontier which is still unjustified.
At this time, a contradiction has occurred (a =0 and ¢ = 1), and the search reverses
its last decision, changing a =0 to a = 1. The search discovers that this reversal
also causes a conflict. Thus, a backtrack occurs where line b is chosen instead

Cc

f

-

o
D

]

® FIGURE 4.16

Example circuit.



182 VLSI Test Principles and Architectures

of a for the previous decision, so a is reset to “don’t care.” By assigning b =0,
a conlflict is observed. Reversing b also cannot justify all the J-frontier. At this time,
backtracking on b leads to no prior decisions. Thus, target fault g/1 is declared to
be untestable.

44.4 PODEM

In the D algorithm, the decision space encompasses the entire circuit. In other
words, every internal gate could be a decision point. However, noting that the end
result of any ATPG algorithm is to derive a solution vector at the primary inputs and
that the number of primary inputs generally is much fewer than the total number
of gates, it may be possible to arrive at a very different ATPG algorithm that makes
decisions only at primary inputs rather than at internal nodes of the circuit.

PODEM [Goel 1981] is based on this notion and makes decisions only at the
primary inputs. Similar to the D algorithm, a D-frontier is kept. However, because
decisions are made at the primary inputs, the J-frontier is unnecessary. At each
step of the ATPG search process, it checks if the target fault is excited. If the
fault is excited, it then checks if there exists an X-path from at least one fault-
effect in the D-frontier to a primary output, where an X-path is a path of “don’t
care” values from the fault-effect to a primary output. If no X-path exists, it means
that all the fault-effects in the D-frontier are blocked, as illustrated in Figure 4.17,
where both possible propagation paths of the D have been blocked. Otherwise,
PODEM will pick the best X-path to propagate the fault-effect. Note that if the
target fault has not been excited, the first steps of PODEM will be to excite the
fault.

The basic flow of PODEM is illustrated in Algorithms 7 and 8. It is also based on
a branch-and-bound search, but the decisions are limited to the primary inputs. All
internal signals obtain their logic values via logic simulation (or implications) from
the decision points. As a result, no conflict will ever occur at the internal signals
of the circuit. The only possible conflicts in PODEM are either (1) the target fault
is not excited, or (2) the D-frontier becomes empty. In either of these cases, the
search must backtrack.

L
B
L) o—

m FIGURE 4.17

No X path.
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Algorithm 7 PODEM(C, f)

1: initialize all gates to don’t-cares;

2: D-frontier = @;

3: result = PODEM-Recursion(C);

4. if result == success then

5:  print out values at the primary inputs;
6: else

7: print fault f is untestable;

8: end if

Algorithm 8 PODEM-Recursion(C)

1: if fault-effect is observed at a PO then
return (success);

: end if

: (g, v) = getObjective(C);

: (pi, u) = backtrace(g, v);

: logicSimulate_and_imply(pi, u);

: result = PODEM-Recursion(C);

: if result == success then
return(success);

10: end if

11: /* backtrack */

12: logicSimulate_and_imply(pi, u);

13: result = PODEM-Recursion(C);

14: if result == success then

15:  return(success);

16: end if

17: /* bad decision made at an earlier step, reset pi */
18: logicSimulate_and_imply(pi, x);

19: return(failure);

NGO WN

According to the algorithm in PODEM, the search starts by picking an objective,
and it backtraces from the objective to a primary input via the best path. Control-
lability measures can be used here to determine which path is regarded as the best.
Gradually more primary inputs will be assigned logic values. At any time the target
fault becomes unexcited or the D-frontier becomes empty, a bad decision must have
been made, and reversal of some previously decisions is needed. The backtracking
mechanism proceeds by reversing the most recent decision. If reversing the most
recent decision also causes a conflict, the recursive algorithm will continue to back-
track to earlier decisions, until no more reversals are possible, at which time the
fault is determined to be undetectable.

Three important functions in PODEM-Recursion() are getObjective(), back-
trace(), and logicSimulate_and_imply(). The getObjective() function returns the
next objective the ATPG should try to justify. Before the target fault has been excited,
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the objective is simply to set the line on which the target fault resides to the value
opposite to the stuck value. Once the fault is excited, the getObjective() function
selects the best fault-effect from the D-frontier to propagate. The pseudo-code for
getObjective() is shown in Algorithm 9.

Algorithm 9 getObjective(C)

: if fault is not excited then

return (g, v);

: end if

: d = a gate in D-frontier;

: g = an input of d whose value is x;
: v = non-controlling value of d;

: return (g, v);

NO O AW

The backtrace() function returns a primary input assignment from which there
is a path of unjustified gates to the current objective. Thus, backtrace() will never
traverse through a path consisting of one or more justified gates. From the objec-
tive’s point of view, the getObjective() function returns an objective, say g =v, which
means the current value of g is “don’t care.” If g were set to v, g =v would have never
been selected as an objective, as it conflicts with gate g’s current value. Now, if g =x
currently, and the objective is to set g =v, there must exist a path of unjustified
gates from at least one primary input to g. This backtrace() function can simply be
implemented as a loop from the objective to some primary inputs through a path
of “don’t cares.” Algorithm 10 shows the pseudo-code for the backtrace() routine.

Finally, the logicSimulate_and_imply() function can simply be a regular logic
simulation routine. The added imply is used to derive additional implications, if
any, that can enhance the getObjective() routine later on.

Consider the multiplexer circuit shown in Figure 4.10 again. Consider the tar-
get fault f stuck-at-0. First, PODEM initializes all gate values to x. Then, the first

Algorithm 10 backtrace(C)

ti=g;

: num_inversion = 0;

: while i # primary input do

i=an input of i whose value is x;

if i is an inverted gate type then
num_inversion—+-+;

end if

: end while

: if num_inversion == odd then

10: v=y;

11: end if

12: return(i, v);
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TABLE 4.4 m PODEM Objectives and Decisions for f Stuck-At-0

getObjective() backtrace() logicSim() D-frontier
f=1 c=0 d=0,f=D, g
e=0,h=0
a=1 a=1 g=D,z=D /0 detected

objective would be to set f = 1. The backtrace routine selects ¢ = 0 as the decision.
After logic simulation, the fault is excited, together with e =/ = 0. The D-frontier
at this time is g. The next objective is to advance the D-frontier, thus getObjective()
returns a = 1. Because a is already a primary input, backtrace() will simply return
a = 1. After simulating a = 1, the fault-effect is successfully propagated to the pri-
mary output z, and PODEM is finished with this target fault with the computed
vector abc = 1X0. Table 4.4 shows the series of objectives and backtraces for this
example.

Consider the circuit shown in Figure 4.11. Suppose the target fault is b stuck-
at-0. After circuit initialization, the first objective is b = 1 to excite the fault. The
backtrace() returns a = 0. After logic simulation, although the target fault is excited,
there is no D-frontier, because ¢ =d = 0. At this time, PODEM reverses its last
decision a = 0 to a = 1. After logic simulating a = 1, the target fault is not excited
and the D-frontier is still empty. PODEM backtracks but there is no prior decision
point. Thus, it concludes that fault /0 is undetectable. Table 4.5 shows the steps
made for this example, and Figure 4.18 shows the corresponding decision tree.

Consider again the circuit shown in Figure 4.16 with the target fault g/1. After
circuit initialization, the first objective is to excite the fault; in other words, the
objective is g = 0. The backtrace() function backtraces from the objective backward
to a primary input via a path of “don’t cares.” Suppose the backtrace reaches a = 0.
After logic simulation, g =0, ¢ =d =0, and i = 0. The D-frontier is . However, note
that there is no path of “don’t cares” from any fault-effect in the D-frontier to a
primary output! If the PODEM algorithm is modified to check that any objective
has at least a path of “don’t cares” to one or more primary outputs, some needless

TABLE 4.5 m PODEM Objectives and Decisions for b Stuck-At-O

getObjective() backtrace() logicSim() D-frontier
b=1 a=0 b=1,¢c=0,d=0 [
a=1 (reversal) — b=0,¢c=1,d=0 [
e :\1.
Conflict Conflict

= FIGURE 4.18

Decision tree for fault b/0.
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TABLE 4.6 m PODEM Objectives and Decisions for g Stuck-At-1

getObjective() backtrace() logicSim() D-frontier
g=0 a=0 g=D,c=0 h (but no
d=0,i=0 X-path to PO)
a=1 (reversal) — c=1,d=1 ]

searches can be avoided. For instance, in this example, if the next objective was
f =1, even after the decision of b =1 is made, the target fault still would not have
been detected, as there was no path to propagate the fault-effect to a primary
output even before the decision b = 1 was made. In other words, the search could
immediately backtrack on the first decision a = 0. In this case, a = 1, and the
objective is still g = 0. Backtrace() will now return b = 0. After logic simulation,
g=0,¢c=1,{=0, h=0, i=0. Again, there is no propagation path possible. As
there is no earlier decision to backtrack to, the ATPG concludes that fault g/1 is
untestable. Table 4.6 shows the steps for this example.

44.5 FAN

While PODEM reduces the number of decision points from the number of gates in
the circuit to the number of primary inputs, it still can make an excessive number
of decisions. Furthermore, because PODEM targets one objective at a time, the
decision process may sometimes be too localized and miss the global picture. The
FAN (Fanout-Oriented TG) algorithm [Fujiwara 1983] extends the PODEM-based
algorithm to remedy these shortcomings.

To reduce the number of decision points, FAN first identifies the headlines in
the circuit, which are the output signals of fanout-free regions. Due to the fanout-
free nature of each cone, all signals outside the cone that do not conflict with
the headline assignment would never require a conflicting value assignment on
the primary inputs of the corresponding fanin cone. In other words, any value
assignment on the headline can always be justified by its fanin cone. This allows the
backtrace() function to backtrace to either headlines or primary inputs. Because
each headline has a corresponding fanin cone with several primary inputs, this
allows the number of decision points to be reduced.

Consider the circuit shown in Figure 4.19. If the current objective is to set z =1,
the corresponding decision tree based on the PODEM algorithm will involve many
decisions at the primary inputs, suchasa=1,c=1,d=1,e=1,f = 1. On the other
hand, the decision based on the FAN algorithm is significantly smaller, involving
only two decisions: x =1 and y = 1. If z = 1 was not the first objective, there would
have been other decisions made earlier. In other words, if there was a poor decision
made in an earlier step, PODEM would need to reverse and backtrack many more
decisions compared to FAN.

The next improvement that FAN makes over PODEM is the simultaneous satis-
faction of multiple objectives, as opposed to only one target objective at each step.
Consider the circuit fragment shown in Figure 4.20. Without taking into account
multiple objectives, the backtrace() routine may choose the easier path in trying
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= FIGURE 4.19

Circuit with identified headlines.

LD

= FIGURE 4.20

Multiple backtrace to avoid potential conflicts.

to justify k = 0. The easier path may be through the fanout stem b. However, this
would cause a conflict later on with the other objective #2 = 1. In FAN, multiple
objectives are taken into account, and the backtrace routine scores the nodes visited
from each objective in the current set of objectives. The nodes along the path with
the best scores are chosen. In this example, a = 0 will be chosen rather than b =0,
even if a = 0 is less controllable.

4.4.6 Static Logic Implications

Logic implications capture the effect of assigning logic values on other gate values
in a circuit. They can be extremely helpful for the ATPG to make better decisions,
reduce the number of backtracks, etc. Over the past few decades, logic implications
have been applied and shown their effectiveness in several areas relevant to testing.
They include test-pattern-generation [Schulz 1988] [El-Maleh 1998] [Tafertshofer
2000], logic and fault simulation [Kajihara 2004], fault diagnosis [Amyeen 1999],
logic verification [Paul 2000] [Marques-Silva 1999a] [Arora 2004], logic optimiza-
tion [Ichihara 1997] [Kunz 1997], and untestable fault identification [Iyer 1996a]
[TIyer 1996b] [Peng 2000] [Hsiao 2002] [Syal 2004].
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A powerful implication engine can have a significant impact on the performance
of ATPG algorithms. Thus, much effort has been invested over the years in the
efficient computation of implications. The quality of implications was improved
with the computation of indirect implications in SOCRATES [Schulz 1988]. Static
learning was extended to dynamic learning in [Schulz 1989] and [Kunz 1993],
where some nodes in the circuit already had value assignments during the learning
process. A 16-valued logic was introduced by Cox et al. [Rajski 1990], and reduction
lists were used to dynamically determine the gate values. Chakradhar et al. proposed
a transitive closure procedure based on the implication graph. Recursive learning
was later proposed by Kunz et al. [Kunz 1994] in which a complete set of pair-wise
implications could be computed. In order to keep the computational costs low, a
small recursion depth can be enforced in the recursive learning procedure. Finally,
implications to capture time frame information in sequential circuits in a graphical
representation were proposed in [Zhao 2001] to compactly store the implications
in sequential circuits.

All of the aforementioned techniques require the proper understanding of logic
implications. As indicated earlier, logic implications identify the effect of asserting
logic values on gates in a circuit. Static logic implications, in particular, can be
computed as a one-time process before ATPG begins. At the end of the process,
relationships among a subset of signals in the circuit would have been learned.
Static logic implications have been categorized into direct, indirect, and extended
backward implications. Direct implications for a gate g simply denote logic rela-
tionships immediately on a circuit gate. On the other hand, indirect and extended
backward implications require circuit simulation and the application of transition
and contrapositive properties. Because they are more involved, they help to identify
the logical effect of asserting a value on g with nodes in the circuit that may not
be directly connected to g. The following terminology is used for the discussion on
logic implications:

1. [N,v,t]: Assign logic value v to gate N in time frame ¢. In combinational
circuits, ¢ is equal to 0 and can thus be dropped from the expression; that is,
if t =0, [N, v, t] is rewritten as [N, v].

2. [N,v,t;]— [M,w,t,]: Assigning logic value v to gate N in time frame ¢, would
imply a logic value w to gate M in time frame z,.

3. Impl|[N, v, t]: The set of all implications resulting from the value assignment
of logic value v to gate N in time frame ¢. For t = 0, Impl[N, v, t] is simply
represented as Impl[N, v].

Consider an AND gate and its implication graph, shown in Figure 4.21. Because
the simple AND gate has three corresponding signals, a, b, and ¢, the associ-
ated implication graph has six nodes. An edge in the implication graph indi-
cates the implication relationship. For example, ¢ = 1 has two implications: b = 1
anda=1.

The following example will explain further the concepts of direct, indirect,
and extended backward implications. Note that the static logic implications are
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:

Example of an implication graph.

= FIGURE 4.21
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® FIGURE 4.22

Sequential circuit fragment.

applicable to both combinational and sequential circuits. Given the sequential cir-
cuit fragment shown in Figure 4.22, consider gate f = 1:

1. Direct implications: A logic value of 1 on gate f would directly imply g=k =1
because they are directly connected to gate f. In addition, f =1 —>d =1
and e = 1. Thus, the set {(f, 1,0), (g, 1,0), (k, 1,0), (d, 1,0), (e, 1, 0)} is the set of
direct implications for f = 1. Similarly, direct implications associated with
g =1 can be computed to be {(g, 1,0), (j, 1, 0), (f, 1, 0)}. These implications are
stored in the form of a graph, where each node represents a gate (with a logic
value). A directed edge between two nodes represents an implication, and a
weight along an edge represents the relative time frame associated with the
implication. Figure 4.23 shows the graphical representation of a portion of
direct implications for f = 1 in this example. The complete set of implications
resulting from setting f = 1 can be obtained by traversing the graph rooted
at node f = 1. Computing the set of all nodes reachable from this root node
(f = 1) (transitive closure on f = 1) would return the set Impl[f = 1]. Thus, the
complete set of direct implications using the implication graph shown in the
figure for f =1 1is: {(f, 1,0), (d, 1,0), (¢, 1,0), (g, 1,0), (k, 1,0), (7, 1, 0), (¢, 1, —1)}
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Portion of implication graph for f = 1.

2. Indirect implications: Note that neither j = 1 nor k = 1 implies a logic value on
gate x individually. However, if they are taken collectively, they imply x = 1.
Thus, indirectly, f = 1 would imply x = 1. This is an indirect implication of
f =1, and it can be computed by performing a logic simulation on the current
set of implications of the root node on the circuit. In this example, by inserting
the implications of f = 1 into the circuit, followed by a run of logic simulation,
x = 1 would be obtained as a result. This new implication is then added as
an additional outgoing dashed edge from f = 1 in the implication graph as
shown in Figure 4.24. Another nontrivial implication that can be inferred from
each indirect implication is based on the contrapositive law. According to
the contrapositive law, if [N, v] — [M, w, t,], then [M, w] — [N, v, —t,]. Because
[, 11 = [x, 1, 0], by the contrapositive law, [x, 0] — [f, 0, 0].

3. Extended backward (EB) implications: Extended backward implications aim
to increase the number of implications for any single node by exploring the
unjustified implied nodes in the implication list. Using the same circuit shown
in Figure 4.22 again, in the implication list of f = 1, d = 1 is an unjustified gate
because none of d’s inputs has been implied to a value of logic 1. Thus, d is a
candidate for the application of extended backward implications. To obtain
extended backward implications on d, a transitive closure is first performed

u FIGURE 4.24

Adding indirect implications for f = 1.
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for each of its unspecified inputs. In this case, implla = 1] and impl[b = 1]
are first computed. The implications of f = 1 are logic simulated together
with each of d’s unspecified input’s implication sets in turn, creating a set of
newly found logic assignments for each input of the chosen unjustified gate.
For this example, when the implications of (a = 1) and (f = 1) are simulated,
the new assignments (set,) found include (w, 0, 0) and (z, 0, 0). Similarly, for
the combined implication set of (b =1) and (f = 1), the new assignments
(set;) found include (y, 0,0) and (z, 0,0). All logic assignments that are not
already in Impl[f = 1] which are common to set, and set, are the extended
backward implications. These new implications are added as new edges to
the original node f = 1. In this running example, because (z, 0, 0) is common
in set, and set,, it is a new implication. The corresponding new implication
graph is illustrated in Figure 4.25, where the new implication is shown as a
dotted edge.

4.4.7 Dynamic Logic Implications

While static implications are computed one time for the entire circuit, dynamic
implications are performed during the ATPG process. At a given step in the ATPG
process, some signals in the circuit would have taken on values, including D or
D. This set of values may imply other signals which are currently unassigned to
necessary value assignments. In general, dynamic implications work locally around
assigned signals to see if any implication can be derived. For instance, consider
the simple AND gate ¢ =a -b. According to static logic implications, ¢ = 0 does not
imply any value on either a or b. However, if a = 1 has been assigned by the current
decision process, then ¢ = 0 would imply b = 0. This can be deduced readily. The
implicant, b = 0, may be propagated further to imply other signals.

The concept of direct, indirect, and extended backward implications can be
applied in dynamic implications as well. Consider the circuit shown in Figure 4.26.
Suppose ¢ = 1 has been achieved by the decision process. Then, in order to achieve
7 =0, either d must be 0 or e must be 0. For d =0, both a and b must be 0. On the
other hand, for e =0, since ¢ = 1, the only way for e = 0 is that b be assigned to 0.

® FIGURE 4.25

Adding extended backward implications for f = 1.
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Another dynamic implications example.

The intersection of {a =0, b =0} and {b =0} is {b = 0}. In other words, the dynamic
implication for z =0 givenc=1is b =0.

Dynamic implications can also be applied to signals with a fault-effect. For
instance, consider the circuit shown in Figure 4.27. Suppose there is a D on signal b,
and this fault-effect is the only one for the current target fault. Then, in order to
propagate the fault-effect to the primary output z, f = 1 is a necessary condition.
This dynamic implication can be obtained via the following analysis. For b =D to
propagate to z, either a = 0 or ¢ = 1 is needed, resulting in a fault effect at signal d
or e. Regardless of which path the fault effect propagates, signal f = 1 is a necessary
condition for the fault effect to propagate to z. Such an observation was made in
[Akers 1976] [Fujiwara 1983].

The work in [Hamzaoglu 1999] extended this concept of dynamic implications
a step further. Suppose the D-frontier for the current target fault consists of gates
g1, & - - -,&,- By a similar analysis as the previous example shown in Figure 4.27,
each gate g; € D-frontier would have a set of necessary assignments, A,. Clearly, the
necessary assignment for any single fault-effect may not be necessary for detecting
the target fault. However, in order to propagate the fault effect to a primary output,
at least one fault effect in the D-frontier must be sensitized to the output. Subse-
quently, the intersection of all the necessary assignments for each of the gates in the
D-frontier would be the set of required assignments for detection of the target fault.
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In other words, Ny ; cp-ponier A; 1S the set of necessary assignments for detecting the
target fault.

Finally, another form of dynamic learning consists of finding a partial circuit
decomposition in the form of a frontier called the evaluation frontier (or E-frontier
for short) [Giraldi 1990]. The idea behind this is that at any point in the decision
process there exists a frontier of evaluated gates, and that the same frontier may be
achieved by a different set of decision variables. For instance, three value assign-
ments are possible to achieve the output of an AND gate set to logic 0. Each frontier
can be associated with an edge in the decision tree. Suppose a set of E-frontiers
has been learned for fault f; and the corresponding decision tree for f; is available.
Now, for a different fault f;, if a similar E-frontier is obtained, where the E-frontier
has at least one fault effect as illustrated in Figure 4.28, the subtree for fi’s decision
tree could be directly copied from the subtree in f;’s decision tree, to which the
E-frontier was mapped. Note that the set of current primary input assignments is
sufficient to justify the E-frontier, and all nodes to the right of the E-frontier are all
“don’t cares.” In this figure, the only primary inputs that could have been used to
propagate the fault effect are a, b, and m. If there was an assignment on these three
primary inputs that was able to propagate the D for fault f; to a primary output,
then the same assignment would be able to propagate the D for f; as it had the same
E-frontier. In other words, the decision variables in the subtree corresponding to
this point in the decision process consisted of only these three variables outside the

E-frontier

E-frontier

® FIGURE 4.28

Example of evaluation frontier.
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E-frontier. Stated differently, the propagation of the fault effect could directly be
borrowed from a previous fault. The same concept can be extended to untestable
faults as well.

4.5 DESIGNING A SEQUENTIAL ATPG

4.5.1 Time Frame Expansion

Test generation for sequential circuits bears much similarity with that for com-
binational circuits. However, one vector may be insufficient to detect the target
fault, because the excitation and propagation conditions may necessitate some of
the flip-flop values to be specified at certain values.

The general model for a sequential circuit is shown in Figure 4.29, where flip-
flops constitute the memory/state elements of the design. All the flip-flops receive
the same clock signal, so no multiple clocks are assumed in the circuit model.
Figure 4.30 illustrates an example of a sequential circuit which is unrolled into
several time frames, also called an iterative logic array of the circuit. For each
time frame, the flip-flop inputs from the previous time frame are often referred to
as pseudo primary inputs with respect to that time frame, and the output signals
to feed the flip-flops to the next time frame are referred to as pseudo primary
outputs. Note that in any unrolled circuit, a target fault is present in every time
frame.

When the test generation begins, the first time frame is referred to as time frame 0.
An ATPG search similar to a combinational circuit is carried out. At the end of

Primary Primary
Inputs Outputs

Combinational Logic

Clock

—_—
Memory
Elements

m FIGURE 4.29

Model of a sequential circuit.



Test Generation 195

PRIMARY INPUTS

g @3—@
= e = s = =

PRIMARY OUTPUTS

Time frame —k Time frame 0 Time frame 1 Time frame |

= FIGURE 4.30

An ILA model.

the search, a combinational vector is derived, where the input vector consists of
primary inputs and pseudo primary inputs. The fault-effect for the target fault may
be sensitized to either a primary output of the time frame or a pseudo primary
output. If at least one pseudo primary input has been specified, then the search
must attempt to justify the needed flip-flop values in time frame —1. Similarly,
if fault-effects only propagate to pseudo primary outputs, the ATPG must try to
propagate the fault-effects across time frame +1. Note that this results in a test
sequence of vectors. As opposed to combinational circuits, where a single vector is
sufficient to detect a detectable fault, in sequential circuits a test sequence is often
needed.

One question naturally arises: Should the ATPG first attempt the fault excitation
via several time frames —1, —2, etc., or should the ATPG attempt to propagate the
fault-effect through time frames 1, 2, etc.? It can be observed that in propagating
the fault-effect in time frame 1, the search may place additional values on the
flip-flops between the boundary of time frames 0 and 1. These added constraints
propagate backward and may add additional values needed at the pseudo primary
inputs at time frame 0. In other words, if the ATPG first justifies the pseudo primary
inputs at time frame 0, it would have missed the additional constraints placed by
the propagation. Therefore, the ATPG first tries to propagate the fault-effect to a
primary output via several time frames, with all the intermediate flip-flop values
propagated back to time frame 0. Then, the ATPG proceeds to justify all the pseudo
primary input values at time frame 0.

While easy to understand, the process can be very complex. For example, if the
fault-effect has propagated forward for three time frames: time frames 1, 2, and
3. Now in time frame 4, suppose the ATPG successfully propagates the fault-effect
to a primary output (i.e., it has derived a vector at time frame 4), it must go back
to time frame 3 to make sure the values assigned to the flip-flops at the boundary
between time frames 3 and 4 are indeed possible. It must perform this check for
time frames 2, 1, and 0. If at any time frame a conflict occurs, the vector derived
at time frame 4 is actually invalid, as it is not justifiable from the previous vectors.
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At this time, a backtrack occurs in time frame 4 and the ATPG must try to find a
different solution vector #4. This process is repeated.

One way to reduce the complexity discussed above is to try to propagate the
fault-effect in an unrolled circuit instead of propagating the fault-effect time frame
by time frame. In doing so, a k-frame combinational circuit is obtained, say k =256,
and the ATPG views the entire 256-frame circuit as one large combinational circuit.
However, the ATPG must keep in mind that the target fault is present in all 256
time frames. This eliminates the need to check for state boundary justifiability
and allows the ATPG to propagate the fault-effect across multiple time frames at a
time.

When the fault-effect has been propagated to at least one primary output, the
pseudo primary inputs at time frame 0 must be justified. Again, the justification
can be performed in a similar process of viewing an unrolled 256-frame circuit. As
before, the ATPG must ensure that the fault is present in every time frame of the
unrolled circuit.

4.5.2 5-Valued Algebra Is Insufficient

Because the fault is present in every time frame, it makes value justification tricky.
For example, when justifying the pseudo primary input vector 01X1, is it sufficient
to obtain the fault-free values of 01X 1, or do the corresponding faulty values on
these inputs need to be at the same logic values as fault-free values? If the faulty
values can be different from the fault-free values, the 5-valued logic would be
insufficient for this task [Muth 1976]. In other words, to justify a fault-free value
of 1, the corresponding faulty value could be X and the justified state may still be
sufficient to propagate the fault-effect to the primary output. Consider the circuit
shown in Figure 4.31a. In the one-time-frame illustration of the sequential circuit,
the target fault is /0. Because the fault is present in every time frame of the unrolled
ILA, the fault-free and faulty values arriving at the flip-flops in the previous time
frame may be different. Taking this into consideration, it may be possible to obtain
a value of 1/0 or 1/1 at signal a. However, when looking at this target fault, either
1/0 or 1/1 would be able to successfully propagate the fault effect at b to the output
of the AND gate. Therefore, a = 1/X is a sufficient condition and should be returned
by the getObjective() function of the ATPG. If a = 1/1 were the objective returned
by the getObjective() function, it may not be possible to derive this value from the
flip-flops, thus over-constraining the search space. By a similar discussion, the b/1
fault shown in Figure 4.31b only requires a = X/1 in order to propagate the fault
effect.

HITEC [Niermann 1991] is a popular sequential test generator that performs the
search similar to the discussed methodologies with a 9-valued algebra. In addition, it
uses the concept of dominators to help reduce the search complexity. A dominator
for a target fault is a gate in the circuit through which the fault-effect must traverse
[Kirkland 1987]. Therefore, for a given target fault, all inputs of any dominator
gate that are not in the fanout cone of the fault must be assigned to noncontrolling
values in order to detect the fault.
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The need for 9-valued algebra in sequential circuits.

The concept of controllability and observability metrics can be extended to
sequential circuits such that the backtrace routine would prefer to backtrace toward
primary inputs and those easy-to-justify flip-flops. Using sequential testability met-
rics allows the ATPG to narrow the search space by favoring the easy-to-reach states
and avoiding getting into difficult-to-justify states.

The computational complexity of a sequential ATPG is intuitively higher than
that of the combinational ATPG. Therefore, aggressive learning can help to reduce
the computational cost. For instance, if a known subset of unreachable states is
available, this information can be used to allow the ATPG to backtrack much sooner
when an intermediate state is unreachable. This can avoid successive justification
of an unreachable state. Likewise, if a justification sequence has been successfully
computed for state S before, and a different target fault requires the same state
S, the previous justification sequence can be used to guide the search. Note that,
because the target faults are different, the justification sequence may not simply be
copied from the solution for one fault to another.

4.5.3 Gated Clocks and Multiple Clocks

All the algorithms for sequential ATPG thus far assumed the sequential circuit
has a single global clock. This assumption is simple as all memory elements (flip-
flops) switch synchronously at every clock; however, in modern digital systems, this
assumption is often not true. For instance, gated clocks (illustrated in Figure 4.32a)
and multiple clocks (Figure 4.32b) are becoming mainstream. Gated clocks are
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Non-traditional clocking schemes.

mostly used for power savings, such that not all memory elements will switch at
every clock. On the other hand, multiple clocks benefit performance, power, and
design as blocks can be partitioned to different clock domains.

If circuit modification is not possible, ATPG should be designed to perform some
circuit modeling as a preprocessing step to ease the ATPG process. Actually, this
is the approach taken by most current EDA vendors today. In other words, instead
of designing new ATPG algorithms that can handle designs with gated clocks and
multiple clocks, it may be easier to slightly modify the circuit such that the original
circuit is transformed to one that uses only a single, global clock such that the
transformed circuit is functionally equivalent to the original design. For instance,
consider the gated clock case. The memory element that depends on a gated clock
can easily be modified to one that depends on a single global clock by adding
a small multiplexer, as shown in Figure 4.33. In the top half of the figure, the
gated clock with signal b is easily transformed to the one shown on the right. The
lower portion of the figure shows an example where the clock signal is an arbitrary
internal signal; this also can be transformed in a similar manner. Note that the
transformed designs shown on the right are functionally equivalent to the original
designs.

Likewise, for a circuit with multiple clocks, a transformation is possible with sim-
ilar design changes. Figure 4.34 illustrates the modification. The modified design
is one where the clock is modified. This can further be converted by adding a
multiplexer as done in the gated-clock scenario so the resulting design has a single
global clock. In particular, the “new a” and “new b” signals can be converted to
those having MUX-based inputs, as shown in Figure 4.33. The Clock1 and Clock2
signals may be used as the select signals for the multiplexers.

After a circuit with gated and/or multiple clocks has been modified, conventional
stuck-at ATPG algorithms (combinational or sequential) will be readily applicable.
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Transformation of multiple clocks.

Note, however, fault models other than the stuck-at model may not necessarily
benefit from this transformation.

Finally, alternatives to the above MUX-based modifications are possible for han-
dling designs with multiple clocks. They include the one-hot or the staggered clock-
ing schemes. The details of the clocking are described in Section 5.7. One-hot
clocking gives better fault coverage, but it suffers from potential large test sets.
On the other hand, staggered clocking results in slightly lower fault coverages, but
it can be applied using a combinational ATPG with circuit expansion. Sequential
ATPG may be used as well, but it may incur longer execution times.

In addition to one-hot and staggered clocking, simultaneous clocking allows for
all clocks to be run at the same time, but it marks unknowns (X’s) between clock
domains and uses one-time-frame combinational ATPG. EDA vendors tend to start
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with staggered or simultaneous clocking schemes, then a one-hot clocking scheme
is used to detect any remaining faults [Wang 2003].

4.6 UNTESTABLE FAULT IDENTIFICATION

Untestable faults are faults for which there exists no test pattern that can both
excite the fault and propagate its fault-effect to a primary output. Thus, a fault may
be untestable for any of the following three reasons:

® The conditions necessary to excite the fault are not possible.

®  The conditions necessary to propagate the fault-effect to a primary output are
not possible.

® The conditions for fault excitation and fault propagation cannot be simulta-
neously satisfied.

In combinational circuits, untestable faults are due to redundancies in the circuit,
while in sequential circuits untestable faults may also result from the presence of
unreachable states or impossible state transitions.

From an ATPG’s point of view, the presence of untestable faults in a design can
degrade the performance of the ATPG tool. When considering untestable faults, an
ATPG engine must exhaust the entire search space before declaring such faults as
untestable. Thus, the performance of ATPG engines (as well as fault-simulators)
can be enhanced if knowledge of untestable faults is available a priori. In other
words, untestable faults can first be filtered from the fault list and the tools work
only on the remaining faults, which could be much fewer than the original number
of faults. There are additional benefits of untestable fault identification: Untestable
faults in the form of redundancies increase the chip area; they may also increase
the power consumption and the propagation delays through a circuit [Friedman
1967]. The presence of an untestable fault can potentially prevent the detection of
other faults in the circuit [Friedman 1967]. Finally, untestable faults may result in
unnecessary yield loss in scan-based testing. This is because even though the circuit
remains fully operational in the presence of untestable faults, scan-based testing
may detect such faults and reject the chip. As a result, significant effort has been
invested in the efficient identification of untestable faults.

The techniques that have been proposed in the past for untestable fault identifi-
cation can be classified into fault-oriented methods based on deterministic ATPG
[Cheng 1993] [Agrawal 1995] [Reddy 1999], fault-independent methods [Iyer 1996a]
[Tyer 1996b] [Hsiao 2002] [Syal 2003] [Syal 2004], and hybrid methods [Peng 2000].
The fault-independent methods generally are based on conflict analysis. While
the deterministic ATPG-based methods outperform fault-independent methods for
smaller circuits, the computational complexity of deterministic ATPGs makes them
impractical for large circuits. On the other hand, conflict-based analysis targets
the identification of untestable faults that require a conflicting scenario in the cir-
cuit. These methods do not target specific faults, thus they are fault-independent
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approaches. FIRE [Iyer 1996a] is a technique to identify untestable faults based on
conflict analysis. While the theory can be applicable to any conflicting scenario,
only single-line conflicts were implemented in FIRE. The basic idea behind FIRE
is very simple. Because it is impossible for a single line to take on both logic values
0 and 1 simultaneously, logic values 0 and 1 set on any signal would clearly be
a conflicting scenario. Subsequently, any fault that requires a signal set to both
logic values 0 and 1 for its detection would be untestable. In order to reduce the
computational cost, FIRE restricts its search to only fanout stems instead of every
gate in the circuit.

In the single-line conflict analysis, for each gate in the circuit, the following two
sets are computed:

® S,—Set of faults not detectable when signal g = 0.

® S,—Set of faults not detectable when signal g = 1.

Essentially, all the faults in each set S, require g =i for their detection. Thus,
any fault that is in the intersection of sets S, and S; would be untestable because
it requires conflicting values on g as necessary conditions for its detection. The
following example illustrates the single line conflict analysis.

Consider the circuit shown in Figure 4.35. During static learning, the implications
for every gate can be computed as discussed earlier in this chapter. For example,

Implb,1,0]={(b, 1,0), (b,, 1,0), (b,, 1,0), (d, 1,0), (x, 0,0), (z, 0, 0)}.

®  Faults unexcitable due to b =1:

With b =1, it would not be possible to set line d =0, as {b=1} - {d = 1}.
Thus, fault d/1 would be unexcitable when b = 1. In other words, this fault
requires b = 0 as a necessary condition for its detection. Essentially, if [k, v, t] €
Impl[N, w)], then fault k/v would be unexcitable in time frame t with N =w in
the reference time frame 0. Similarly, faults b/1,b,/1,b,/1,d/1,x/0,z/0 would
be unexcitable with b = 1.

® Faults unobservable due tob =1:

Because {b =1} — {x =0}, line y is blocked. Hence, faults y/0 and y/1 would
require b = 0 as a necessary condition for their detection. Similarly, any faults

® FIGURE 4.35

Example of single line conflict analysis.
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appearing on lines a, ey, e,, etc., would also be blocked due to implications of
b = 1. The unobservable information could be propagated backwards until a
fanout stem is reached at which the faults on the fanout stem may no longer be
unobservable. The condition for checking if the fanout stem is unobservable
is to see if the stem can reach any of the blocking conditions for each of
the fanout branches. For instance, using the circuit illustrated in Figure 4.35,
if a =1 and ¢ =0, both fanout branchs b1 and 52 would be unobservable.
However, because the fanout stem b cannot reach any of the conditions for
blocking any of the branches (i.e., the blocking condition for b1 is a =1 and
the blocking condition for b2 is ¢ = 0), stem b would still be unobservable.
The complete set of faults that cannot be propagated due to b =1 is:

{a/0,a/1,e,/0,e,/1,v/0,v/1,e,/0,e,/1,¢/0,e/1,¢/0,¢/1,b,/0,b,/1}.
Thus, S, is the union of the two sets computed above:
S, =1{b/1,b,/1,b,/1,d/1,x/0,2/0,a/0,a/1,e,/0,e,/1,v/0,v/1,e,/0,e,/1,
e/0,e/1,¢/0,¢/1,b,/0,b,/1}.
Now, consider the implications of b = 0:
Impl[b, 0,0] = {(b, 0,0), (b;, 0, 0), (b,,0,0), (e,0,0), (e, 0,0), (e5, 0,0), (¥, 1,0)}.

Similar to the analysis performed for b = 1, faults that are unexcitable and
unobservable due to b = 0 can be computed, resulting in:

Sy=1{b/0,b,/0,b,/0,¢/0,¢,/0,e,/0,v/1,¢/0,¢c/1}

Now that both S; and S, are computed, any fault that is in the inter-
section of the two sets would be untestable. In this example, S,NS; =
{b,/0,¢/0,e,/0,e,/0,v/1,¢/0,c/1}. These faults are untestable because they
require a conflicting assignment on line b (b =1 and b = 0 simultaneously) as
a necessary condition for their detection.

In a follow-up work to FIRE, FIRES [Iyer 1996b] targeted untestable faults
in sequential circuits based on single-line conflicts. In addition, FILL and
FUNI [Long 2000] adapted the concept of single-line conflicts to multiple
nodes on the state variables (flip-flops) because any illegal state in sequential
circuits is considered an impossible value assignment. As a result, any fault
that requires an illegal state necessary for its detection would be untestable.
A binary decision diagram (BDD)-based approach is used to identify illegal
states, and FUNI [Long 2000] utilized this illegal state space information to
identify untestable faults. MUST [Peng 2000] was built over the framework of
FIRES as a hybrid approach (fault-oriented and fault-independent) to iden-
tify untestable faults; however, the memory requirement for MUST can be
quadratic in the number of signals in the circuit. Next, Hsiao presented a
fault-independent technique to identify untestable faults using multiple-node
impossible value combinations [Hsiao 2002]. Finally, the concept of multiple-
node conflicts is extended in [Syal 2004] to identify more untestable faults.
The underlying concept of multiple line conflict is discussed next.
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4.6.1 Multiple-Line Conflict Analysis

The application of logic implications to quickly identifying untestable faults is
evident from the previous example. However, it is restricted to single-line conflicts.
The application of logic implications to the identification of untestable faults can be
taken to the next level, where impossible value combinations on multiple signals in
the circuit are used as conflicting scenarios. These impossible value combinations
are then used to identify untestable faults.

Finding trivial conflicting value assignments from the implication graph is easy,
but it will not help to find more untestable faults because the single-line con-
flict approach has already taken these conflicts into account. For instance, if the
implication set impl[x,0] includes [y,1], then the pair {[x, 0], [v, 0]} naturally forms a
conflicting value assignment. However, in the original FIRE algorithm, if Sez, and
Set, have been computed to be the faults that require x = 0 and x = 1, respectively,
then Set, already contains all the faults that require y = 0 to be testable. This can be
explained as follows: Because the set of faults that require y = 0 are obtained as those
undetectable due to the value assignments in inpl[y,1], and because y =0 — x =1,
by the contrapositive law x =0 — y = 1 can be obtained. Thus, impl[y, 1] C impl[x, 0].
This leads to the following observation: The set of faults requiring x = 1, set; (i.e.,
undetectable computed from impl[x,0]) must contain every fault that requires y =0
as well.

Consequently, methods that can quickly identify non-trivial impossible com-
binations are needed in order to find more untestable faults. Finding arbitrary
value conflicts in the circuit can be computationally expensive, thus any algorithm
must limit the search for conflicting value assignments to computationally feasible
approaches. In [Hsiao 2002], the impossible value assignments are limited to those
associated with a single Boolean gate, making the algorithm of O(n) complexity,
where # is the number of gates in the circuit.

Consider the AND gate and its implication graph again, shown in Figure 4.36.
When considering a single-line-conflict algorithm, there are three such cases for the
AND gate: {a=0,a=1},{b=0,b=1}, and {c =0,c = 1}. (Recall that identification
of undetectable faults when a = 0 requires impl[a = 1], as described earlier.) By
traversing the implication graph, the impossible value combination imposed by
the conflicting line assignment {a = 0,a = 1} includes the set {a =0,a = 1,¢ = 0}.
Similarly, one can obtain the sets of impossible value combination for conflicting

. & o
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® FIGURE 4.36

AND gate example.
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line assignments {b=0,b=1} and {c=0,c=1}as {b=0,b=1,¢=0} and {c =0,
c¢=1,a=1,b =1}, respectively.

Note that there exist other sets of impossible value combinations not covered by
any of these three single-line conflicts. Not all remaining conflicting combinations
are nontrivial. For example, consider the conflicting scenario {a = 0,c = 1}. This
is a trivial value conflict because [a = 0] — [¢ = 0] and [¢ = 1] — [a = 1]. There-
fore, {a =0, ¢ = 1} is already covered by the single-line conflicts {a =0,a =1} and
{c=0,c=1}

There exists a conflicting assignment that is not covered by any single-line
conflicts: {a = 1,b =1,c¢ = 0}. In order to compute the corresponding impossible
value assignment set, it is necessary to compute the following implications:
implla = 0], impl[b = 0], and impl[c = 1]. By traversing the implication edges in the
graph, the impossible value assignment set {a =0,b=0,c=0,c=1,a=1,b=1}is
obtained. This set has not been covered in any of the previous impossible value
assignment sets, and hence the value set {a = 1,b = 1,¢ = 0} may be used for
obtaining additional untestable faults that require this conflict.

Impossible value combinations for other gate primitives and/or gates with differ-
ent number of inputs can be derived in a similar manner.

The technique would then identify the value combination of {a = 1,b=1,¢ =0}
as impossible to achieve, and then untestable faults would be identified by creating
the following sets:

®  S,—Set of faults not detectable when signal a = 0.
® S,—Set of faults not detectable when signal b = 0.

m S,—Set of faults not detectable when signal ¢ = 1.

The faults in S, S;, and S, require a =1, b =1, and ¢ = 0, respectively, as neces-
sary conditions for their detection. Then, the intersection of S, S;, and S, would
represent the set of untestable faults due to this conflicting value assignment.

Because the aim is to identify as many nontrivial conflicting value assignments
as possible, which leads to untestable faults, the new approach of maximizing local
impossibilities is performed on top of the single-line conflict FIRE algorithm, which
is described below in Algorithm 11.

In this algorithm, the implication graph is first constructed, with indirect implica-
tions computed and added to the graph. Then, a single-line conflict FIRE algorithm
is performed (line #3). Next, for each set of conflicting values not covered by the
single-line conflict for each gate, the set of faults untestable due to such conflicts
is computed. Because the algorithm on maximizing local value impossibilities is
performed once for each gate, the complexity is kept linear in the size of the cir-
cuit. For large circuits, the number of additional untestable faults identified can be
significant.

Maximizing local impossibilities can be extended further so the conflicting value
assignments are no longer local to a Boolean gate. Consider the circuit shown in
Figure 4.37. In [Hsiao 2002], the technique would identify the value combination
of {g¢=1,h=1,2=0} as impossible to achieve, and then untestable faults would be
identified correspondingly.
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Algorithm 11 MaxLocalConflicts()

1: construct implication graph (learn any additional implications via extended backward
impl, etc.);

: for each line I in circuit do

identify all untestable faults using the single-line-conflict FIRE algorithm;

: end for

: /* maximizing impossibilities algorithm */

: for for each gate g in circuit do

SIV = set of impossible value combinations not yet covered for gate g;

i=0;

for each value assignment (a =v) in SIV do

10: set, = faults requiring a = v to be detectable;

11: i=i+1;

12:  end for

13:  untestable_faults = untestable_faults U(Nyset,);

14: end for

B

® FIGURE 4.37

Circuit to illustrate multi-node impossible combination.

Now, it is interesting to note from Figure 4.37 that the value combination
{d=0,e=0),(f =1,c=1),z=0} also forms a conflicting value assignment. In
addition, because Impl([f, 0, 0] D Impl[h, 0, 0] and Impl[c, 0, 0] D impl[h, 0, 0], the set
of faults untestable due to f = 0 and ¢ = 0 could potentially be greater than that due
to & = 0. Similarly, the set of faults that can be identified as untestable due tod =1
and e = 1 could be greater than that untestable due to g = 0. Consequently, the set of
untestable faults identified using this new conflicting combination could be greater
than that identified with the original conflicting value set {g=1,2=1,7=0}.

This comes at a small price: The number of sets for which intersection must be
performed for the conflict {(f =1,¢=1), (d =0,e =0),z =0} would be greater than
that for {g =1, = 1,z = 0}. However, because set intersection can be performed
on the fly (with the faults computed for each implication set), the intersection
operation can be aborted as soon as the intersection becomes empty. A larger
conflicting value set might hurt the performance if each set intersection remains
non-empty until the last intersection is performed and the intersection becomes
empty only after the last intersection operation. However, this does not happen
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often, and the computational overhead due to a bigger set of impossible value
combinations remains acceptable.
Before proceeding to the algorithm, the following terms are first defined:

Definition 1

Nonterminating necessary condition set (NTC): NTC for an assignment x =v is
defined as the set of value assignments {a, = w;|w; € {0, 1}} that are necessary to
achieve x =v. However, there may exist other assignments that are necessary to
achieve some or all conditions in NTC.

For example, in Figure 4.37, h =1 and g = 1 are necessary for z = 1. However, there
exist assignments (f =1,¢c=1,d =1, and e = 1) that are necessary to achieve h =1
and g =1. Thus, h =1, g =1 forms the NTC for z = 1.

Definition 2

Terminating necessary condition set (TNC): TNC for an assignment x =v is the
set of value assignments {a; = w;|w; € {0, 1}} necessary to achieve x =v such that
there exist no additional assignments that are necessary to achieve any conditions
in this set.

For example, in Figure 4.37,f =1,c¢=1,d =0, and e = 0 form the TNC for z = 1.

According to Definitions 1 and 2, the set of conflicting conditions obtained in
[Hsiao 2002] would correspond to the NTC set for a gate x =v. These conflicting
conditions would form the TNC only if INTC| = |TNC]| for any x =v.

In the new approach [Syal 2004], the TNC for any assignment x =v is first
identified (rather than the NTC). Then the set {TNC,x =V} forms a conflicting
assignment. As the size of the TNC is greater than that of NTC, the new approach
may take more execution time than that taken by the previous approach in [Hsiao
2002], but the following definition and corresponding lemma guarantee that the
new approach always identifies at least as many (and potentially more) untestable
faults as identified in [Hsiao 2002].

Definition 3

Related elements: Gates a and b are related elements if there exists at least one
topological path from a to b.

Lemma 2

If two related elements a and b exist such that the assignment a =v is a part of
TNC for a gate g =u and b =w is a part of NTC for the same gate g = u, then
implla, v] 2 impl[b, w].
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Algorithm 12 Multi-Line-Conflicts()

1: construct implication graph;

2: /* identification of impossible combinations */
3: for each gate assignment g = val do

4 identify the TNC for g = val;

5 Impossible Combination (IC) set = TNC, g = val;
6: i=0, S, =9;

7 for each assignment a=w in IC do

8 S; = fault untestable with a = w;

9

: if i == O then
1 O: Suntest = Suntest U Si;
11: else
12: suntest = Suntest N Si;
13: end if
14: if S,ee = ¢ then
15: break;
16: else
17: i++;
18: end if
19: end for
20: end for

Proof

Because b =w is not a terminating necessary condition for g = u, there must exist
some necessary conditions to achieve b =w. Now, because a =v is a terminating
condition for g =u and because a and b are related, then a =v must be a part of
the conditions necessary to set b =w. This means that in order to set b =w, gate
a must be set to v, or in other words, [b,w, 0] — [a, v, 0]. By contrapositive law,
[a, v, 0] = [b, w, 0]. Thus, impl[a, v, 0] 2 impl[b, w, 0].

Thus, according to Lemma 2, the implications of the complement of all elements in
a TNC are a superset of the complemented related elements in a NTC for any given
assignment. Therefore, the set of untestable faults obtained using TNCs is always
a superset of those using NTCs as used in [Hsiao 2002]. The complete algorithm
to identify untestable faults using a multiple-line conflict analysis is shown in
Algorithm 12.

4.7 DESIGNING A SIMULATION-BASED ATPG

In this section, we will discuss how simulation, as opposed to deterministic algo-
rithms, can be used for generating test vectors. This section begins with an overview
of how simulation can be used to guide the test generation process and then
discusses how tests can be generated in specific frameworks, such as genetic
algorithms, state partitioning, spectrum, etc.
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4.7.1 Overview

As we have already seen earlier in this chapter, the random test generator is a
simple type of simulation-based ATPG. The vectors are randomly generated and
simulated on the circuit under test, and any vector that is capable of detecting new
faults is added to the test set. While this concept is relatively simple, its applicability
is limited as random ATPG cannot generate vectors that target hard faults.

Simulation-based test generators were first proposed in 1962 by Seshu and
Freeman [Seshu 1962]. Subsequently, several other simulation-based test genera-
tors have been developed, including [Breuer 1971], [Schnurmann 1975], [Lisanke
1987], [Wunderlich 1990], [Snethen 1977], and [Agrawal 1989]. Each of these test
generators will be described in the following discussion.

Random vectors are simulated and selected using a fault simulator in [Breuer
1971]. Weighted random test generators were introduced in [Schnurmann 1975],
[Lisanke 1987], and [Wunderlich 1990], in which each bit is generated with a biased
coin (as opposed to an unbiased one in the simple random test pattern generator),
and high fault coverages were reported for combinational circuits. Specific faults
are targeted in the test generators proposed in [Snethen 1977] and [Agrawal 1989],
and the ATPGs only considered vectors of Hamming distance equal to one between
consecutive vectors. In other words, any two successive vectors can differ in only
a single bit. Finally, cost functions computed during fault simulation were used to
evaluate the generated vectors in [Agrawal 1989].

While these aforementioned simulation-based ATPGs were able to reduce the
test generation time, the test sets generated were typically much longer than those
generated by deterministic test generators. In addition, in sequential circuits, many
difficult-to-test faults were frequently aborted. Finally, even when simulation-based
test generators can be effective in detecting hard faults, simulation-based algo-
rithms, per their nature, cannot detect untestable faults. In this regard, determin-
istic algorithms will be needed to uncover any faults that are untestable.

4.7.2 Genetic-Algorithm-Based ATPG

A simple genetic algorithm (GA) can be used for the generation of individual
test vectors for combinational as well as sequential circuits. In a typical GA, a
population of individuals (or chromosomes) is defined, where each individual is a
candidate solution for the problem at hand. As the individual represents a test vector
for combinational circuit test generation, each character in the individual is mapped
to a primary input. If a binary coding is used, the individual simply represents
a test vector. Each individual is associated with a fitness, which measures the
quality of this individual for solving the problem. In the test generation context,
this fitness measures how good the candidate individual is for detecting the faults.
The fitness evaluation can simply be computed by logic or fault simulation. Based
on the evaluated fitness, the evolutionary processes of selection, crossover, and
mutation are used to generate a new population from the existing population. The
process is repeated until the fitness of the best individual cannot be improved or is
satisfactory.
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GA framework.

One simple application of GAs for test generation is to select the best test vectors
for each GA run. A simple view of a GA framework is illustrated in Figure 4.38.
The test generator starts with a random population of n individuals, and a (fault)
simulator is used to calculate the fitness of each individual. The best test vector
evolved in any generation is selected and added to the test set. Then, the fault set
is updated by removing the detected faults by the added vector(s). The GA process
repeats itself until no more faults can be detected.

Because a new random population is used initially, the GA process may not
guarantee that a successful vector can be found. Likewise, in sequential circuits, a
number of vectors may be necessary to drive the circuit to a state before the fault
can be excited. Therefore, a progress limit should be used to limit the amount of
execution allowed before the the entire process stops. When the population does
not start with a right combination of individuals, the GA process may not result
in an effective test vector. When this happens, the GA is reinitialized with a new
random population, and a new GA attempt proceeds. This overall procedure is
shown in Algorithm 13.

Note that in this procedure, the GA operators of selection, crossover, and muta-
tion are applied in each iteration. Rather than exposing the reader to the numerous
schemes for each GA operator, the following discussion will focus on the classic
methods. First, for the selection operator, two popular schemes are often used:
binary tournament selection and roulette wheel selection. In binary tournament
selection, to select one individual from the population, two individuals are first
randomly chosen from the population, and the one with the greater fitness value
is selected as a parent individual. This is repeated to select a second parent. Note
that, because a comparison is made in the process, selection is biased toward the
more fit individuals. In the roulette wheel selection scheme, the »n individuals in
the population are mapped onto #n slots on the wheel, where the size of each slot
corresponds to the fitness of the individual, as illustrated in Figure 4.39. Thus, when
the roulette wheel is spun, the position where the marker lands will determine the
individual selected. Note that both roulette wheel and binary tournament selections
may be conducted with or without replacement. When no replacement is used,
the individuals selected are not put back into the population for the subsequent
selection. In other words, an individual will not be selected more than once as a
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Algorithm 13 Simple_GA_ATPG

1: test set T =0;

2: while there is improvement do

3 initialize a random GA currentPopulation;

4 compute fitness of currentPopulation;

5 for i = 1 to maxGenerations do

6: add the best individual to test set T;

7 nextPopulation = ¢;

8 for j =1 to populationSize/2 do

9 select parent; and parent, from currentPopulation;

10: crossover(parent; , parent,, child;, child,);
11: mutate(child, );

12: mutate(child,);

13: place child; and child, to nextPopulation;
14. end for

15: compute fitness of nextPopulation;

16: currentPopulation = nextPopulation;

17:  end for

18: end while

ak

= FIGURE 4.39

Roulette wheel selection.

candidate parent individual. Finally, when comparing the effectiveness of roulette
wheel with binary tournament selections, the notion of selection pressure is nec-
essary. Selection pressure is the driving force that determines the convergence rate
of the GA population, in which the population converges to »n identical (or very
similar) individuals. Note that fast convergence may not necessarily lead to a better
solution. Roulette wheel selection with replacement results in a higher selection
pressure than binary tournament selection when there are some highly fit individ-
uals in the population. On the other hand, when individuals’ fitnesses have a small
variance, binary selection will apply a higher selection pressure.
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The next GA operator to be discussed is the crossover operator. Again, the dis-
cussion will focus on classic crossover techniques. In essence, once two parent
individuals are selected, crossover is applied to the two parent individuals to pro-
duce two children individuals, where each child inherits parts of the chromosomes
from each parent. The idea behind crossover is that the building blocks from two
different solutions are combined in a random fashion to produce two new solu-
tions. Intuitively, a more fit individual contains more valuable building blocks when
compared with a less fit individual. Because the selection biases toward more fit
individuals, the building blocks from the more fit parents are passed down to the
next generation. When the valuable building blocks from different fit parents are
combined, more fit individuals may result. In the following, one-point, two-point,
and uniform crossover are explained.

Suppose the length of an individual is A. In one-point crossover, the two parents
are crossed at a randomly chosen point, 7, between 1 and A — 1. Consequently, the
first child inherits the first » bits from parent #1 and the final A —r bits from parent
#2, while the second child inherits the first » bits from parent #2 and the final A —r
bits from parent #1. Table 4.7 illustrates an example of the one-point crossover
scheme. The vertical line in the table indicates the crossover point.

Similar to the one-point crossover, two-point crossover works in a similar fashion
except that two points are chosen instead of one. The portion of the parent individ-
uals between the two points are swapped to produce the new individuals. Table 4.8
illustrates an example for the two-point crossover scheme. Again, the vertical lines
indicate the crossover point.

Finally, in uniform crossover, a crossover mask is first generated randomly, and
the bits between the two parent individuals are swapped whenever the correspond-
ing bit position in the crossover mask is one. Table 4.9 illustrates an example for
the uniform crossover scheme.

The reader is encouraged to try applying crossover on individuals over a few
generations to see how new individuals may be produced, similar to the examples
illustrated here.

TABLE 4.7 m One-Point Crossover

Parent #1 110011001100 | 110011001100
Parent #2 101010101010 | 101010101010
Child #1 110011001100 | 101010101010
Child #2 101010101010 | 110011001100

TABLE 4.8 m Two-Point Crossover

Parent #1 11001100 11001100 11001100
Parent #2 10101010 10101010 10101010
Child #1 11001100 10101010 11001100

Child #2 10101010 11001100 10101010
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TABLE 4.9 m Uniform Crossover

Mask 010011100100010011110101
Parent #1 110011001100110011001100
Parent #2 101010101010101010101010
Child #1 100010101000100010101000
Child #2 111011001110111011001110

TABLE 4.10 m Mutating Bit Position #3

Before mutation 110011001100110011001100
After mutation 111011001100110011001100

The third GA operator to be discussed is the mutation operator. It allows the
child individual to vary slightly from the two parents it had inherited. The mutation
operator simply selects a random bit position in an individual and flips its logic
value with a mutation probability. An example of mutating bit #3 is shown in
Table 4.10. Let u be the mutation probability. If u is too small, children individuals
that are produced after crossover may rarely see any mutation. In other words, it
is less likely that new genes (building blocks) will be produced. On the other hand,
if u is too large, too much random perturbation may occur, and the resemblance
may soon be lost after a few generations.

4.7.2.1 Issues Concerning the GA Population

The population size should be a function of the individual length. In sequential
circuits, the individual length is equal to the number of primary inputs in the circuit
multiplied by the test sequence length. The population size may be increased from
time to time to increase the diversity of the individuals, thereby helping to expand
the search space.

One pertinent issue in the GA population is the encoding of the individuals:
whether a binary or nonbinary coding should be used. In a binary coding, the
individual is simply the test vector itself (or a sequence of vectors in the case of
sequential circuits). Thus, the GA operates directly on that string. For instance, bit-
wise crossover and bitwise mutation can be used. (Bitwise mutation is simply the
flipping of a single bit in the vector.) On the other hand, in a nonbinary coding, sev-
eral bits are combined and represented by a separate character in the alphabet, and
the GA operates on the individual as a string of characters. Special operators are
needed for the nonbinary alphabet. For example, crossover can now occur only at
multi-bit boundaries, and mutation involves replacing a given character in an indi-
vidual with a randomly generated character. Finally, in a nonbinary coding, a larger
population size and mutation rate may be required to ensure adequate diversity.

Obtaining a compact test set is another concern; thus, an accurate fitness measure
is needed. As fault simulation is used to compute the fitness, computation of the
fitnesses in each GA generation can be costly. To reduce this cost, approximation
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can be used, in which a fault sample from the complete fault list may be used. In
doing so, fault simulation only has to consider the faults in the sample rather than
the entire fault list.

Another method to reduce the execution time is to use overlapping populations
in the GA. In overlapping populations, some individuals from the parent genera-
tion are copied over to the offspring generation. Therefore, only a fraction of the
population is replaced in each generation.

The success of using GAs to obtain the desired solution depends also on how the
GA parameters are chosen. First and foremost, the population size of the GA should
be such that adequate diversity is represented. In the context of test generation,
certain values on specific primary inputs may be necessary to excite a fault. If no
individual in the initial population has this specific combination, then none of the
strings in the population would have been able to excite the fault. As the number of
bit combinations increases exponentially with the vector length, the population size
should be large enough to appropriately reflect the embedded diversity. However,
the population should not be too large to the extent that the cost of evaluating
the fitnesses of individual becomes infeasible. These two factors must be carefully
considered when determining the GA population size.

4.7.2.2 Issues Concerning GA Parameters

The first GA parameter to be considered is the number of generations necessary
to achieve a desirable solution. Similar to population size, the number of genera-
tions necessary to obtain an individual with a specific bit pattern requires the GA
designer’s attention. For instance, if the target fault demands a pattern of “1011”
among four bits in the vector, and if this pattern is absent in the initial population,
it may take several generations before an individual arrives at this pattern. The
number of generations is also related to the population size. Larger populations
will likely require more generations to allow for more diverse pairs of individuals
to be as parent individuals. Thus, it may suffice to have a small population and a
small number of generations to target the easy to detect faults and then increase
both the population size and the number of generations when targeting the more
difficult faults.

The next two parameters are the crossover and mutation probabilities. A
crossover probability of 1.0 means that two parent individuals are always crossed
so that two children individuals are produced from the parents. Mutation is used
to introduce added diversity. A population after several generations will be more
likely to have individuals that are more fit than those in the initial population. As
the more fit individuals may have similarities, mutation can randomly flip certain
bits among the individuals to decrease their similarity. However, mutation can
also destroy those good patterns already achieved in some individuals. Thus, an
appropriate mutation probability is needed to achieve an appropriate balance.

4.7.2.3 Issues Concerning the Fitness Function

How the fitness values are computed for the individuals in the population is a very
important concern, as the search critically relies on the fitness values. An ill-defined
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fitness metric can mislead the GA to arrive at a suboptimal solution, or even no
solution at all. For instance, a population whose individuals’ fitnesses are similar
will not allow the selection process to identify more highly fit individuals to act as
parents. Furthermore, without a metric, the individuals may become indistinguish-
able even when they really are distinguishable. For example, if the fitness function
is simply a binary function, where an individual’s fitness is equal to one if the target
fault is excited and zero otherwise, this will result in many individuals with fitness
equal to zero if they do not excite the target fault. It is clear, however, that some
individuals may be closer to exciting the target fault than others. However, the
aforementioned binary fitness function would prevent the GA from distinguishing
those more fit individuals from the less fit ones.

At the start of the ATPG process, there may exist many easy-to-detect faults;
therefore, it may be advantageous to first detect them before targeting the harder
faults. In this regard, dividing the ATPG process into different phases would be
desirable. As an example, CONTEST [Agrawal 1989] targets test generation in three
phases, each having its own distinct fitness measure.

A two-stage ATPG process is described here. In the first stage, the aim is to detect
as many faults as possible. The fitness function could simply be the number of
faults detected. This fitness metric allows the GA to bias toward those vectors that
could potentially detect more faults. One can refine this fitness function to become:

Fitness = a x detected + 3 x excited

In this case, individuals that detect the same number of faults may be distinguished.

Initially, when there are still many easy faults undetected, many individuals will
have high fitness values. As vectors are added to the test set and detected faults
removed from the fault list, the average fitness of individuals will be expected to
come down. When this occurs, it will become increasingly difficult for the GA to
distinguish good individuals from the less fit individuals, as discussed earlier. Con-
sequently, the ATPG enters the second stage, where the goal is targeting individual
faults instead.

In the second stage, each GA process targets a specific fault. Thus, the fitness
function should also be adjusted similarly for this purpose. The fitness ought to
measure how close the individual is to exciting the fault, as well as how close it is
to propagating the fault-effect to a primary output. For measuring how close the
individual is to exciting the fault, one can check the number of necessary value
assignments. For instance, suppose the target fault is /0 at the output of AND gate
h, as illustrated in Figure 4.40. Then, an individual that sets both inputs of % to
logic 0 (Case 2 in the figure) is further away from exciting the fault than another
individual that sets one input to logic 1 (Case 1 in the figure). For measuring how
close the individual propagates a fault effect to a primary output, the fitness can
measure the number of D or D present in the circuit generated by the individual,
together with the observability value associated with the lines to which the D(D)
has propagated.

For sequential circuits, it may be appropriate to have a stage zero where the
goal is to initialize all the flip-flops. The fitness of an individual is then simply the
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Fitness measure on how close a fault is excited.

number of additional flip-flops set to logic zero or logic one, as done in [Rudnick
1994a] [Rudnick 1994b]. Note that only logic simulation is needed in this stage.
For subsequent stages, the fitness function may take into account the fault-effects
that propagate to flip-flops as well, as it may take several time frames in order to
propagate the fault-effect to a primary output.

As calculating the fitnesses of individuals dominates the computational cost of the
GA, care must be taken when designing the fitness functions. Data structures that
allow for fast access to the fault-free and faulty values in the circuit, for instance,
would be desired. When fitness value calculation becomes prohibitive, one may
reduce the cost by estimating the fitness instead of computing the exact fitness. In
stage one, for example, fault samples may be used instead of simulating all faults.
Also, counting the number of events in logic simulation may be used to estimate
the number of faults excited; this may eliminate the high cost of fault simulation.
When using such fitness estimates, one must be aware of the potential loss in the
quality of the derived solution and that the final fault coverage may also be reduced.

4.7.2.4 CASE Studies

In the GA-based ATPG by Srinivas and Patnaik [Srinivas 1993], combinational cir-
cuits were targeted. Each individual represented a test vector. The fitness function
accounted for excitation of the fault and propagation of the fault effect. Depending
on the fitness of an individual, different crossover and mutation rates were used.
While test sets were large, high coverages were obtained.
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Genetic algorithms based on [Holland 1975] were used in CRIS [Saab 1992] in
which two individuals were evolved in each generation, which replaced the least fit
individuals with some probability. The fitness measure was based on the fault-free
activities in the internal nodes in the circuit. This allowed the fitness evaluation
to be simple, as only logic simulation is required, thus significantly reducing the
computation costs. The circuit is divided into various partitions based on each
primary output, and the fitness function favors those individuals that produce
similar levels of activity in each partition. It has been presumed that vectors that
induce high levels of activity are expected to result in higher fault coverage. As the
fitness metric is an estimate of fault coverage, the resulting test sets are longer and
may have lower fault coverage compared to deterministic test generators.

GATTO [Prinetto 1994] targeted sequential circuits and was based on GAs in
the fault propagation phase during the test generation process. First, a reset state
was assumed and random vectors were generated from the reset state until at least
one fault had been excited. Then, for a limited group of excited faults (up to at
most 64 faults), the GAs were used to propagate them toward the primary outputs
or flip-flops. If any fault-effect reached a primary output, the corresponding test
sequence was added to the test set. If the GAs were unsuccessful in propagating the
fault-effects to a primary output, the GA stopped and started over from the reset
state to obtain a different set of excited faults. GATTO was able to achieve higher
fault coverages compared to CRIS for some circuits.

A GA-based combinational test generator was developed by Pomeranz and Reddy
[Pomeranz 1997] in which problem-specific information was used. In this case,
circuit information played a significant role. For instance, primary inputs lying in
the same cone of logic were grouped together, and crossover was limited to pri-
mary input group boundaries. This enforced that fault excitation and propagation
information from effective individuals are preserved during and after crossover
operation. The grouping of the primary inputs was done carefully so that no group
was either too large or too small. Note that, because a primary input can belong
to multiple groups, care must be taken when copying bit values from a parent
individual to a child individual. Uniform crossover was used, and only individuals
that were shown to improve the fault coverage were added to the GA population.
Further, the population size increased dynamically and the GA process terminated
when all faults were detected or a given number of iterations had been reached.

A three-phased sequential test generator based on GAs was developed in GATEST
[Rudnick 1994a] [Rudnick 1994b] that is based on the PROOFS sequential circuit
fault simulator [Niermann 1992]. Table 4.11 shows the population sizes and muta-
tion probabilities used in GATEST as a function of the vector length. Tournament
selection without replacement and uniform crossover are used. In the initial phase
of GATEST, the aim is to initialize all the flip-flops. Thus, the fitness metric mea-
sures the number of new flip-flops initialized to a known value from a previously
unknown state. In this phase, only logic simulation is needed. When all flip-flops
have been initialized, GATEST exits phase one and enters the second phase. In
phase two, the goal is to detect as many faults as possible in any GA attempt. So the
fitness is simply the number of faults detected by the candidate individual and the
number of faults excited and propagated to flip-flops, with more emphasis placed
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TABLE 4.11 m GA Parameter Values

Vector Length (L) Population Size Mutation Probability
<4 8 1/8
4-16 16 1/16
17-49 16 1/L
50-63 24 1/L
64-99 24 1/64
>99 32 1/64

on fault detection. Phase two continues until no more faults can be detected, at
which point GATEST enters phase three. Similar to phase two, phase three aims to
detect as many faults as possible, except that the fitness function now accounts for
the fault-free and faulty circuit activities in addition to fault detection and prop-
agation. Individuals that induce more activity would have higher fitness values.
GATEST allows for phase three to exit and return to phase two when vectors are
found to detect additional faults. Finally, in phase four, sequences of vectors are
used as individuals, and the fitness function is similar to phase two, except that
the test sequence length is also factored in. The fitness of a candidate test for each
phase is calculated as follows:

® Phase 1—Fitness is a function of total new flip-flops initialized.

®  Phase 2—Fitness is a function of the number of faults detected and the number
of faults propagated to flip-flops.

® Phase 3—Fitness is a function of the number of faults detected, the number of
faults propagated to flip-flops, and the number of fault-free and faulty circuit
events.

®  Phase 4—Fitness is a function of the number of faults detected and the number
of faults propagated to flip-flops for a test sequence.

Because one fault is targeted at a time and the majority of time spent by the
GA is in the fitness evaluation, parallelism among the individuals can be exploited.
Parallel-fault simulation [Abramovici 1994] [Bushnell 2000] [Jha 2003] is used to
speed up the process.

High fault coverages and compact test sets have been obtained by GATEST for
combinational circuits. For some circuits, however, deterministic ATPGs could
achieve higher coverage in much less time. For sequential circuits, the number of
faults detected is either greater than or equal to that of deterministic test generators
for most circuits, and the test set sizes are much shorter. In most cases, GATEST
takes only a fraction of the execution time compared to deterministic test genera-
tors. Thus, GATEST can be used as a preprocessor in test generation to screen out
many faults before applying a more expensive deterministic test generator.
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4.8 ADVANCED SIMULATION-BASED ATPG
4.8.1 Seeding the GA with Helpful Sequences

Genetic algorithms have been shown to be effective for test generation in the above
discussion. However, for some difficult faults, the previous GA-based methods may
still underperform the deterministic ATPGs. For such faults, it may be helpful to
embed certain individuals in the initial population to guide the GA. This is called
seeding.

For example, suppose a fault has been excited and propagated to one or more
flip-flops in a sequential circuit, and now the GA attempts to drive the fault-effect
from those flip-flops to a primary output. If there are previously known sequences
that were successful in propagating fault-effects from a similar set of flip-flops, then
seeding these sequences into the initial population may tremendously help the GA.

The DIGATE [Hsiao 1996a] [Hsiao 1998] and the STRATEGATE test generators
[Hsiao 1997] [Hsiao 2000] aggressively apply seeding of useful sequences for the GA.
When there are no such sequences available, both DIGATE and STRATEGATE try
to genetically engineer such sequences. For example, initially, there are no known
sequences that could propagate a fault-effect from any flip-flop to a primary output.
So the test generator generates some of these sequences in a preprocessing step.
Essentially, propagating a fault-effect from a flip-flop to a primary output is the
same as trying to distinguish between two sets of states in the circuit. Two states,
S, and S,, are said to be distinguishable if there exists a finite sequence T such
that the output sequence observed by applying T starting at state S; differs from
the output sequence observed by applying T starting at state S,. If such a sequence
T exists, T is a candidate distinguishing sequence for states S; and S,. Figure 4.41
illustrates an example of a distinguishing sequence for a state pair. The sequence of
four vectors, ‘1001, 0101, 1011, 0111’, distinguishes the state pair (11010, 11000).

In the context of test generation, consider a sequential circuit with five flip-
flops, ff; through ff5. Suppose a fault has been excited and propagated to ff,, and
suppose the fault-free state at this time is ff;. . .ffs = 11010. Then, the faulty state
must be 11000, in which the faulty value at ff, differs from the fault-free value.
Thus if a sequence exists that can distinguish the state pair (11010, 11000), by
definition of a distinguishing sequence, it would be able to produce different output
sequences starting from these two states. In other words, the fault-effect at ff,
would likely be propagated to at least one primary output by the application of
this sequence. Note that this sequence may not detect the fault because the faulty
circuit is slightly different from the fault-free circuit. Therefore, the test generator
is trying to distinguish the state 11010 in the fault-free circuit from the state 11000
in the faulty circuit. Nevertheless, for most cases, the distinguishing sequence is
effective in propagating the fault-effect to a primary output.

Generating distinguishing sequences for sequential circuits can be a very difficult
task. As the main target is test generation, the underlying ATPG ought not spend
too much time on generating distinguishing sequences, but the focus should be on
generating those sequences that are sufficient to detect the set of hard faults. In
other words, to facilitate a fast generation of distinguishing sequences, one cannot
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A distinguishing sequence that distinguishes states 11010 and 11000.

afford to generate a distinguishing sequence for each possible state pair. Rather, the
search may simply be on finding those distinguishing sequences that are applicable
for distinguishing many pairs of states. Using the above five-flip-flop circuit example
again, if a distinguishing sequence exists that can distinguish all pairs of states that
differ in ff,, this sequence would be a powerful distinguishing sequence for many
pairs of states. Although this type of distinguishing sequence can be computed prior
to the start of test generation, such sequences may not exist for every flip-flop in the
circuit. Thus, less powerful distinguishing sequences are also captured during test
generation dynamically. However, less powerful sequences may only be applicable
when the circuit is in a specific state.

In both DIGATE and STRATEGATE, distinguishing sequences are generated both
statically and dynamically during test generation with the help of the GA, and these
sequences are used as seeds for the GA whenever they are applicable to propagate
fault-effects from flip-flops to primary outputs. If a fault is excited and propagated
to multiple flip-flops, all relevant distinguishing sequences corresponding to these
flip-flops are seeded. Whenever newly distinguishing sequences are learned, they are
recorded and saved for future use. To avoid having a huge database of distinguishing
sequences, the list of distinguishing sequences is pruned dynamically such that less
useful sequences are removed from the database.

Results of DIGATE show very high fault coverages compared with previous GA-
based ATPGs. For those faults that have been excited and propagated to at least one
flip-flop, many of them would be detected via the help of the genetically engineered
distinguishing sequences. Note that generation of distinguishing sequences on the
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fault-free machine is possible using binary decision diagrams instead of GAs, as has
been done in [Park 1995] for the purpose of test generation. However, no pruning
of sequences was performed, and no procedure for modifying the sequences was
available to handle faulty circuits.

Despite the high coverages achieved by DIGATE, for some faults that were not
activated to any flip-flop, seeding of distinguishing sequences would not be useful.
These faults are those difficult-to-activate faults. They require specific states and
justification sequences to arrive at those states in order for the faults to be excited
and propagated to one or more flip-flops. For a number of circuits, previous GA-
based methods, including DIGATE, achieved low fault coverages due to the lack of
specific state justification successes with regard to exciting the difficult-to-activate
faults. The difference in fault coverages for some of these circuits was up to 30%.
Even when a GA was specifically targeted at state justification such as in [Rudnick
1995], the simple fitness function used was insufficient to successfully justify these
states.

Storing the complete state information for large sequential circuits is impractical,
as there could potentially be 2" states for circuits with n flip-flops. Likewise, keeping
a database of sequences capable of reaching each reachable state is infeasible. To
tackle this problem, the STRATEGATE test generator [Hsiao 1997] [Hsiao 2000]
was built on top of DIGATE for this very purpose. STRATEGATE uses the linear
list of states obtained by the test vectors generated during ATPG to guide state
justification. Thus, the storage requirement is only on the order of the number of
test vectors rather than exponential based on the number of flip-flops.

To facilitate the state justification, the set of visited states is stored in a table,
together with the corresponding list of vectors that took the circuit to the state, as
shown in Figure 4.42. During state justification, the aim is to engineer a sequence
that will justify the target state from the current state. At any given time during
ATPG, the current state reached by the current set of vectors in the test set is the
starting state. Suppose the current state has been reached at the end of vectors
i, k, and m. When justifying states that have been visited before, the target state
is the state reached at the end of vectors j and [ in Figure 4.42. Either sequence

Test Sequence

Visited States i
Im

J

Starting State |

Ending State - | ] Tz

u FIGURE 4.42

Data structure for dynamic state traversal.
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[i+1,...,j] or sequence [k+1, .. .,1] would suffice to drive the circuit to the target
ending state.

However, if the target state has not been visited before, STRATEGATE tries to
genetically engineer a sequence that can reach it. Note that a sequence that correctly
justifies one portion of the desired state may simultaneously set a different value on
the other portions, resulting in conflicts. Nevertheless, the justification sequences
for each partial state may be viewed as a set of partial solutions for finding the
justification sequence for the complete target state. In other words, the important
information about justifying specific portions of a state is intrinsically embedded
in each partial solution, and this information may be extremely helpful to the GA
in deriving the complete solution.

Based on the above discussion, during the state justification phase for a new
state, STRATEGATE first gathers the set of ending states that closely match (i.e.,
are similar to) the target state from the visited state table. Then, the sequences
corresponding to these states are seeded in the GA in an attempt to engineer a
valid justification sequence for the target state. Consider the example illustrated in
Figure 4.43 in which the state 1X0X10 has to be justified. Sequence T, successfully
justifies all but the third flip-flop value; on the other hand, sequence T, justifies all
but the final flip-flop value. As explained previously, these two sequences (T, and T,)
may provide important information for reaching the complete solution, 75, which
justifies the complete state. T, and T, are thus used as seeds for the GA in an
attempt to genetically engineer the sequence T; in the faulty circuit. Because the GA
performs simulation in the presence of the fault to derive a sequence, any sequence
derived will still be valid. Note that the GA may still abort on the state justification
step, in which it fails to justify the target state. When this happens, the GA enters
the single-time-frame mode, which is discussed next.

Essentially, the single-time-frame phase divides the state justification into two
steps. First, it attempts to derive a single-time-frame vector (consisting of the pri-
mary input and flip-flop values) that can excite the fault and propagate its fault-
effect to at least one flip-flop. Then, it tries to justify the state in the flip-flop portion
of the single-time-frame vector from the current state. Because an unjustifiable
state is undesirable, the fitness function also uses the dynamic controllability values
of the flip-flops to guide the search toward more easily justifiable states. Note that
the state portion of the vector is relaxed (some values are relaxed to “don’t cares”)

,V Starting State\

State-Transfer State-Transfer State-Transfer
Sequence T, Sequence T, Sequence Ty

oy o

State S, State S, Engineer Desired State

® FIGURE 4.43

Genetic justification of desired state.
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to ease the burden of state justification. The relaxed state is ensured by the engine
such that the target fault is still excited and propagated.

Even though STRATEGATE may not justify every required state, the embedded
dynamic state traversal for state justification allows it to close the 30% gap in fault
coverage difference among those circuits where previous GA-based approaches
failed. For other circuits, STRATEGATE has been able to achieve extremely high
fault coverages compared to other simulation-based and deterministic test genera-
tors. The STRATEGATE test sets are often more compact than those obtained by
deterministic test generators, even when higher fault coverages are achieved. The
test sets are more compact than those obtained by CRIS or DIGATE for most cir-
cuits. Finally, simulation-based test generation can be applied to design validation
rather than manufacturing test, such as the work reported in [Hsiao 2001], [Sheng
2002], and [Wu 2004].

4.8.2 Logic-Simulation-Based ATPG

The GA-based ATPGs discussed thus far use repeated fault simulation runs to gather
information related to targeted faults to guide the search for test sequences. As
fault simulation can be significantly more computationally intensive compared to
logic simulation, approaches that use logic simulation rather than fault simulation
have been proposed.

Logic-simulation-based test generators usually target some inherent “property”
in the fault-free circuit and try to derive test vectors that exercise these proper-
ties. It has been brought up earlier in the chapter that the CRIS test generator
attempts to maximize the circuit activity (events in logic simulation), as it has
been observed that circuit activities are correlated to fault excitation. In another
approach, LOCSTEP [Pomeranz 1995] made the observation that test sequences
for sequential circuits achieved higher coverage when more states are visited. This
is because difficult-to-test faults often require difficult-to-reach states in order to
be excited, propagated, etc. Thus, LOCSTEP tries to maximize the number of new
states visited. Because no fault simulation is invoked to remove the detected faults,
and also because the number of reachable states can be huge in large sequential
circuits, the number of vectors can potentially grow to be very large. In addition,
the fault coverage obtained can be inferior to that achieved by fault-simulation-
based test generators. Finally, in other ATPGs that target some properties, such
as in [Guo 1999] and [Giani 2001], compaction is used to identify useful vectors
that may be repeated to detect additional faults. However, repeated applications of
fault simulation are necessary in test set compaction. More discussion on the use
of compaction for test generation is provided later in the chapter.

As logic-simulation-based ATPGs do not call fault simulation on a regular basis,
we may end up with a large number of vectors, where many vectors may not
contribute to detection of new faults. The reason why the indiscriminate addition
of vectors may not contribute to the detection of new faults can be explained by
the following: Because some flip-flops belong to the data path and others to the
controller of the circuit, maximizing the number of new states on the data path
generally will not play as significant a role as maximizing those on the controller.
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State partition examples.

Different states on the datapath generally map to different operand values for
the functional units in the design, while different states in the controller dictate
different modes of operation for the circuit. This implies that the underlying ATPG
should not treat the entire state as one entity. In other words, treating the entire
state as one entity may mislead the test generator, particularly by the “noise” from
those unimportant states. Thus, partitioning of state will help to weed out the noise.
State partitioning can remove the noise and provide better guidance in the search
space, as shown in Figure 4.44.

In Figure 4.44, consider a circuit with eight flip-flops. Let the global state, S,
be partitioned into two partial states, S; and S,, where the value of each partial
state can be expressed in a hexadecimal number; for example, a partial state “1010”
appearing on partition S, is represented by the hexadecimal value ‘A’. The same
notation is used for S,. For the global state S, a pair (S;, S,) is used to represent its
value. For example, the global state “0101 1010” is represented as (5, A).

Assume that the current test set has traversed the following global states in the
circuit: (0, 0), (1, 1), (1, 2), (2, 3). Correspondingly, the distinct partial states visited
on S, and S, are {0, 1,2} and {0, 1, 2, 3}, respectively. Based on this partial state
information, the following two scenarios can occur.

First, suppose there are two new candidate sequences that drive the circuit from
the current state to two new, but different, global states: (2, 1) and (3, 1). While both
states are new, it may be possible that one is better than the other. If no distinction
is made about these two global states, the test generator would simply pick one
randomly. Now, considering state partition as discussed before, the two states can
be differentiated by noting that (3, 1) may be a more useful state because 3 brings a
new state in partition S;, while both 2 and 1 have been reached in the two separate
partitions already.

For the second scenario, suppose the two different global states reached by the
two candidate sequences are (3,0) and (2,4), and, similar to the first scenario, both
states are new global states; in addition, 3 is a new partial state on S; and 4 is a
new partial state on S,. In other words, both states bring something new. However,
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if different weights are imposed on different state partitions, it may be possible to
differentiate them. A partition has a greater weight if it is deemed to have greater
influence on the circuit. Suppose the weight assigned to S, is greater than S,, then
(3, 1) will be favored.

Based on the above discussion, a new test generator was proposed in [Sheng
2002b] that uses logic simulation as the core engine in the test generation process,
in addition to state partitioning. Ideally, a clear distinction between control path
flip-flops and the datapath flip-flops is desired. However, this may be difficult if the
higher levels of the circuit description are unavailable. Without complete knowledge
of controller and datapath, the partitioning is done in a different manner. One
possibility is to partition all the circuit’s flip-flops based on the controllability values
of the flip-flops. Flip-flops with similar ranges of controllability values are grouped
together. The reason behind this grouping is based on the observation that in a
given circuit, some state variables will be less controllable than others. Thus, less
activity will occur in those less-controllable flip-flops. In order to traverse more
useful states, it would be desirable to stimulate more activity on those less active
flip-flops. By grouping them together, any new partial state value reached in that
group will be regarded as valuable. Other partitioning methods exist, such as using
the circuit’s structure to group those flip-flops that belong in the same output
cone, etc.

In addition to state partitioning, the search must avoid repeated visits of certain
types of states, such as reset states. A technique called reset signal masking was
proposed in [Sheng 2002b] for this very task. It is based on the following obser-
vation. Digital circuit designers often put reset or partial reset input signals in
circuits for design for testability (DFT) purposes. When the circuit is extensively
reset or partially reset, the chance of visiting new states is significantly reduced.
Therefore, identifying the signals that can reset some of the flip-flops is necessary.
Then, during test generation, those primary input values that can reset some (or
all) flip-flops are avoided. This is the idea behind reset signal masking. Consider a
state space in which the circuit is currently traversing, illustrated in Figure 4.45. In
this figure, circles denote states, and edges denote transitions between the states.
Generally speaking, the circuit visits a set of easy states initially (which may contain
some reset or synchronizing states) such as those states in the dotted region of the
figure. Then, this set of reached states grows gradually as more states are visited.
As the goal is to expand the state space beyond the current frontier, the search
must avoid repeating the visit of any previously visited states, including reset states.
Using Figure 4.45 again, states A, B, and C are some of the states currently at the
frontier of the reached state space. Consider the frontier state B. In order to avoid
going back to a previously visited state, say A, the search must place constraints on
the primary inputs so that returning to state A will not occur.

The overall test generation procedures that incorporate reset signal masking and
state partitioning are given in Algorithm 14.

In this algorithm, static partitioning is used to obtain initial state partition.
The stop condition is either 100,000 vectors have been generated or the execution
time has reached a preset value. This is an efficient yet simple sequential circuit
test generator based on logic simulation and circuit state partitioning. Very high
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State space exploration.

Algorithm 14 LogicSimATPG

: ldentify reset signal masking for each primary input;

: Partition the flip-flops (e.g., based on their controllability values.);

: while stop condition not satisfied do

Generate test vectors that expand the search space the most using reset signal masking
information and partition information;

Re-partition the flip-flops if desired;

: end while

HWN =

S

fault coverage has been obtained for large sequential circuits with significantly less
computational effort. For some circuits, the highest fault coverage was obtained
compared with existing deterministic and simulation-based approaches.

4.8.3 Spectrum-Based ATPG

Similar to logic-simulation-based ATPG, spectrum-based ATPG tries to seek embed-
ded properties in the fault-free circuit that can help with the test generation process.
For spectrum-based ATPG, the underlying sequential circuit is viewed as a black-
box system that is identifiable and predictable from its input/output signals, rather
than the traditional view as a netlist of primitives. In studying a signal, the foremost
concern is the predictability of the signal. If the signal is predictable, then a portion
of it can be used to represent and reconstruct its entirety. Testing of sequential
systems, then, becomes a problem of constructing a set of waveforms which when
applied at the primary inputs of the circuit can achieve high fault coverages by
exciting and propagating many faults in the circuit.
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In order to capture the spectral characteristics of a signal, a clean representation
for that signal is desired (wider spectra lead to more unpredictable or random
signals). Thus, any embedded noise should be filtered from the signal. In the context
of test generation, static test set compaction can be viewed as a filter as it reduces the
size of the test set by removing any unnecessary vectors while retaining the useful
ones that achieve the same fault coverage as the original uncompacted test set. In
other words, static test set compaction filters unwanted noise from the derived test
vectors, leaving a cleaner signal (narrower spectrum) for analysis. Vectors that are
generated from the narrow spectrum may have better fault detection characteristics.

Frequency decomposition is the most commonly used technique in signal pro-
cessing. A signal can be projected to a set of independent waveforms that have
different frequencies. In the work by Giani et al. [Giani 2001], Hadamard transform
is used to perform frequency decomposition. The reader is referred to the cited
work for details of Hadamard transform, as it is beyond the scope of this chapter.

The overall framework of the spectrum-based test generation procedure is rela-
tively straightforward. Initially (iteration 0), the test set simply consists of random
vectors. A call to static compaction will filter any unnecessary vectors such that
no fault coverage is lost. Then, using the Hadamard transform on the obtained
compacted test set, each primary input is analyzed and the dominant frequency
components for each primary input are identified. Next, test vectors are generated
based on this identified spectrum. Any spectrum can be represented as a linear
combination of the basis vectors. Then, test vectors can be generated by spanning
the likely vector space using only the basis vectors. This process is repeated until
either a desired fault coverage is obtained or a maximum number of iterations is
reached. This approach has consistently achieved very high fault coverages and
small vector sets in short execution times for most sequential benchmark circuits.

4.9 HYBRID DETERMINISTIC AND SIMULATION-BASED ATPG

As both deterministic and simulation-based test generators have their own merits, in
terms of coverage, execution time, test set size, etc., it may be beneficial to combine
the two different types of ATPGs together. In general, deterministic ATPGs are
better suited for control-dominant circuits, while simulation-based ATPGs perform
better on data-dominant designs. In addition, circuits with many untestable faults
should not be handled by simulation-based test generators, unless the untestable
faults are first identified and removed from the fault list.

A simple combination of the two approaches would be to start with a fast run
of a simulation-based test generator, followed by a deterministic test generator
to improve the fault coverage and to identify untestable faults. For instance, a
quick run of a random TPG would remove many of the easy-to-detect faults, leav-
ing the deterministic ATPG only those more difficult and untestable faults. The
CRIS-hybrid test generator [Saab 1994] is also based on this notion. It switches
from simulation-based to deterministic test generation when a fixed number of
test vectors have been generated by the simulation-based ATPG without improving
the fault coverage. During the deterministic ATPG phase, in addition to generation
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of vectors for some undetected faults, some untestable faults are also identified.
Simulation-based test generation may resume after a test sequence is obtained from
the deterministic procedure.

There are of course other methods of combining simulation-based and determin-
istic algorithms for test generation. The GA-HITEC hybrid test generator [Rudnick
1995] uses deterministic algorithms for fault excitation and propagation and a GA
for state justification. Deterministic procedures for state justification are used if the
GA is unsuccessful. Instead of targeting one group of faults at a time, GA-HITEC
targets one fault at a time, as is generally done in deterministic ATPGs.

This particular method of combination in GA-HITEC is based on the observa-
tion that deterministic algorithms for combinational circuit test generation have
proven to be more effective than genetic algorithms [Rudnick 1994]. Furthermore,
in sequential circuits, state justification using deterministic approaches is known
to be very difficult and is vulnerable to many backtracks, leading to excessive exe-
cution times. Therefore, it makes sense to include the deterministic algorithm for
fault excitation and propagation, while the GA is used for state justification. Note
that this approach cannot identify some untestable faults.

In GA-HITEC, a fault is taken as a target. Then, the fault is excited by the
deterministic engine, followed by propagation to a primary output, perhaps through
several time frames, also by the deterministic engine. Through this process, several
primary inputs and flip-flop variables at time frame 0 would have been chosen as
decision points, as illustrated in Figure 4.46. The decisions made on the flip-flops

Step 1; Deterministic ATPG in time-frame zero to derive a combinational vector
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Test generation using GA for state justification.
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at time frame 0 now become the target state to be justified. The GA is invoked at
this time to generate a justification sequence for the target state. If a sequence is
found that justifies the target state, then this sequence is concatenated with the
vectors derived for fault excitation and propagation, and the complete test sequence
is added to the test set. Faults that are detected by this sequence are removed from
the fault-list. On the other hand, if a justification sequence cannot be found by the
GA, then backtracks are made in the fault propagation phase in the deterministic
test generator, and attempts are made to justify any new state.

In the state justification phase, the GA evolves over four full generations for each
target state. Each individual in the population represents a candidate sequence of
vectors. A small population size of 64 is used, and the number of generations is
limited to four to reduce the execution time. The population size is doubled and
the number of generations increased to eight later for the more difficult faults. The
sequence length is also doubled.

During the GA search for a justification sequence, both fault-free and faulty states
are checked for each individual in the population. Note that this check is done for
every vector in an individual, which contains several vectors. Thus, if a match is
found, the length of the actual justification sequence may be less than the length
of the individual. For the purposes of the GA, the fitness function simply measures
how closely t