9. vaja: Skaliranje podatkov na Red Pitayi

Naredili bomo komponento vezja, ki izvaja skaliranje podatkov iz A/D pretvornika na merilni platformi Red Pitaya. Uporabili bomo poenostavljen vmesnik za povezavo s procesorjem.

- 1. Odpakiraj <u>RedPitaya2017.zip</u>, naredi nov projekt za razvojno ploščo RedPitaya in v projekt vključi datoteko rtl/**red_pitaya_proc.vhd** s priključki:
 - **clk_i, rstn_i**: ura in reset signal (aktivna 0)
 - addr_i: 32-bitni naslovni vhod
 - wdata_i: 32-bitni vhodni podatek
 - wen_i, ren_i: vhodna signala za branje in pisanje na vodilo
 - **adc_i**: 14-bitni vhodni merilni podatek
 - rdata_o: 32-bitni izhodni podatek
 - err_o, ack_o: izhoda za javljanje napake in potrditev prenosa
 - adc_o: 14-bitni skaliran merilni izhod
- 2. V vezju je 8-bitni register reg v katerem je faktor za skaliranje vrednosti iz adc_i. Signal adc_i najprej pretvori v notranji signal tipa signed. Vrednost iz 8-bitnega reg pretvori v 9-bitno predznačeno število in pomnoži z adc_i. Rezultat skrči na 14-bitni vektor in pelji na izhod adc_o. Če pride pri množenju do prekoračitve območja 14-bitnih vrednosti, naj gre izhod v pozitivno ali negativno nasičenje.
- Dodaj v opis vezja logiko pisanja na sistemsko vodilo za nastavitev registra reg. Napiši sinhroni proces, ki ob rstn_i='0' postavi register na 0, ob wen_i='1' in naslovu addr_i(19 downto 0)=X"00000" pa prenese v register spodnjih 8 bitov iz vodila wdata_i.
- 4. Preveri delovanje vezja s testno strukturo: <u>TestProc.vhd</u>. Testna struktura zapiše v register vrednost 5, čez nekaj časa pa vrednost 9, na vhod **adc_i** pa pripelje vzorce sinusnega signala amplitude **1540**. Amplituda je izbrana tako, da ostanejo vrednosti po množenju s 5 znotraj območja (-8192, 8191), po množenju z 9 pa so nekatere izven območja in na simulaciji lahko opazujemo učinek množenja z nasičenjem.

V simulatorju nastavi adc_i in adc_o: Radix, Signed Decimal, Waveform Style, Analog:

Name		Value	0 us		5 us			.	10 us
믾, ack_o		1			1				
	Analog Settings		×			~	~		
l+l⊚ adc_l	objects as analog waveforms.	ng the selected	4	\checkmark	\sim	\sim	\sim	\sim	-
	Row height: 100 x pixels		-	(M	\square	\square	\square	
	© <u>A</u> uto			\uparrow	1		$\uparrow\uparrow$	\square	
	Eixed			\lor	$ \cup$		<u> </u>	' '	-
	Mi <u>n</u> : 8200 Ma <u>x</u> :	8200							
	OK	Cancel	Apply						

10. vaja: Preizkus na plošči

- 1. Uporabi projekt iz prejšnje vaje v katerega naj bodo vključene vse podmape (rtl, sdc in tcl). V spodnjem oknu odpri zavihek Tcl Console in izvedi ukaze:
 - premakni se v trenutno mapo, npr: cd c:/proj/divs/redpitaya
 - izvedi skripto, ki naredi blokovni diagram: source tcl/system.tcl
 - in skripto za vključitev datotek: source tcl/files.tcl
- 2. Preveri datoteke projekta in se prepričaj, da vsebuje zadnjo verzijo datoteke **red_pitaya_proc.vhd**, nato pa izvedi prevajanje (sintezo, implementacijo in Generate Bitstream).
 - Program javi nekaj kritičnih opozoril (false path constraint), ki jih lahko ignoriramo.
 - Rezultat prevajanja je datoteka red_pitaya_top.bit v podmapi <ime_projekta>.runs.
- 3. Preizkusi delovanje na Red Pitayi. V laboratoriju LRNV bomo Red Pitayo priklopili kar neposredno na računalnikovo drugo omrežno kartico, ki jo nastavimo na lokalni naslov: **192.168.1.101.** Red Pitaya bo dostopna na naslovu **192.168.1.15** v konzoli SSH (ime: **root**, geslo: **root**). Za delo s konzolo uporabi program **PuTTY**, za prenos datotek pa <u>WinSCP</u>.
 - Prenesi datoteko: **red_pitaya_top.bit** v lokalno mapo na Red Pitayo (npr. root) in jo nato v konzoli kopiraj v /opt/redpitaya/fpga/. Če sistem ne dovoli kopiranja, najprej izvedi ukaz **rw**.
 - V spletni brskalnik napiši naslov: **192.168.1.15** in poženi aplikacijo Oscilloscope. Strežnik je nastavljen tako, da bo v FPGA naložil datoteko **red_pitaya_top.bit**.

Nastavi nek signal na izhod signalnega generatorja (OUT1) in poveži izhod z vhodom osciloskopa. Prikazani signal bo skaliran s faktorjem, ki ga določa vrednost registra. Register nastavljamo v konzoli s programom monitor, tako da podamo naslov in vrednost, npr: monitor 0x40500000 10