Digital Integrated Circuits and Systems

Andrej Trost

Lab 6: Digital filter with HLS (2)

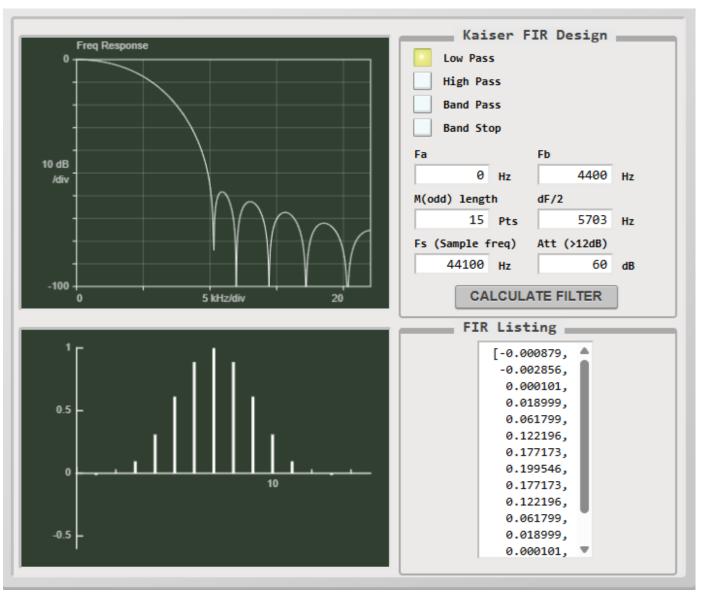
Tool: Vitis 2025.1

Task: Describe in C++ N-tap digital filter, simulate and

synthesize with directives.

Synthesize N-tap filter

- filter performance with different directives
 - Unroll delay loop
 - Unroll summation loop
 - Pipeline complete function


circuit	clock [MHz]	latency cycles	interval cycles	LUT	/	FF	/	DSP

- Is it possible to synthesize N-tap filter with parameter N?
 - explore synthesis and directives...

Finite Impulse Response (FIR) filter

input delayed inputs
$$y[n] = b_0x[n] + b_1x[n-1] + \cdots + b_Nx[n-N]$$

$$= \sum_{i=0}^N b_i \cdot x[n-i],$$
 coefficients

- 1. compute coefficients
- 2. design FIR filter model
- 3. simulate
- 4. synthesize and get performance

Design 7-tap FIR filter

Modify 7-tap averaging filter to FIR filter with coefficients

```
DT c[7] = \{0.0041, 0.0766, 0.245, 0.346, 0.245, 0.0766, 0.0041\};
```

- Verify C++ model with unit pulse
 - input sequence: 0.99, 0, 0, 0, 0, 0, 0, ... produces output sequence with coefficients
- Test with the provided testbench

```
int main() {
  DT x[] = {0.99, 0, 0, 0, 0, 0, 0, 0};

for (int i = 0; i < 8; i++) {
    DT y = filt(x[i]);
    std::cout << "x=" << (float)x[i]
    << " y=" << (float)y << "\n";
}

return 0;
}</pre>
```

FIR filter synthesis

- Synthesize the FIR circuit with UNROLL and PIPELINE directives
- Modify data type for coefficients and sum
 - check filter operation with the provided test bench
 - save synthesis performance data for different configurations
 - use different coefficients set, for example:

0.0508, -0.1602, -0.1172, 0.457, -0.1172, -0.1602, 0.0508

circuit	clock [MHz]	latency cycles	interval cycles	LUT	/	FF	/	DSP