1. vaja: Kombinacijska vezja

Naredi v jeziku VHDL nekaj tipičnih kombinacijskih vezij in ugotovi, koliko celic zasedejo v programirljivem veziju CPLD iz družine Xilinx Coolrunner-II. Zasedenost ugotovite tako, da naredite implementacijo vezja in iz tabele odčitate število uporabljenih makrocelic in členov (pterm) in zasedenih priključkov (pin).

RESOURCES SUMMARY

Macrocells Used	Pterms Used	Registers Used	Pins Used	Function Block Inputs Used
11/256 (5%)	20/896 (3%)	0/256 (0%)	20/118 (17%)	13/640 (3%)

Opiši z logičnimi operacijami polovični seštevalnik. Polovični seštevalnik ima vhoda a in b ter izhod za vsoto (s) in prenos (c). Naredi implementacijo vezja in zapiši zasedenost vezja v tabelo.

Z uporabo operatorjev opiši večbitne seštevalnike, prištevalnike in primerjalnike ter ugotovi kakšna je zasedenost vezja CPLD. Rezultate zapiši v tabelo.

vezje	bitov	makrocelic	členov	priključkov
polovični seštevalnik	1			
prištevalnik (c <= a + 1)	10			
	20			
seštevalnik (c <= a + b)	10			
	20			
primerjalnik (a = b)	10			
	20			
primerjalnik (a > b)	10			
	20			
primerjalnik (a > 0)	10			
	20			

Ali se zasedenost opisanih vezij kaj spremeni, če uporabite knjižnico STD_LOGIC_SIGNED ?_____

Kdaj je vezje, ki računa s predznačenimi števili drugačno od vezja z nepredznačenimi ? _____

Kratka navodila za delo s programsko opremo Xilinx ISE 10.1

Prvi korak je priprava novega projekta (File > New Project). V oknu nastavimo vrsto programirljivega vezja, orodja za sintezo in simulacijo vezja ter privzeti jezik.

Property Name	Value	
Product Category	All	
Family	CoolRunner2 CPLDs	
Device	XC2C256	
Package	TQ144	
Speed	-6	
Top-Level Source Type	HDL	
Synthesis Tool	XST (VHDL/Verilog)	
Simulator	ISE Simulator (VHDL/Verilog)	
Preferred Language	VHDL	
Enable Enhanced Design Summar	у 🗸	
Enable Message Filtering		
Display Incremental Messages		

Ob začeteku pisanja kode VHDL si pomagamo s čarovnikom New Source Wizard. Najprej pritisnemo gumb New Source, določimo ime datoteke: Sestevalnik, izberemo VHDL module in gumb Next (Naprej). Nato v tabeli določimo zunanje signale: v vsako vrstico zapišemo ime signala ter izberemo IN ali OUT. Če je signal večbitni vektor, naredimo kljukico pri Bus in določimo velikost vektorja – nastavljali bomo le številko MSB, LSB pa naj bo vedno na 0. Ko so definirani vsi zunanji signali, zaključimo postopek (Next, ... in Finish).

V urejevalniku se odpre opis priključkov vezja v jeziku VHDL, ki ga dopolnimo s stavki, ki opisujejo delovanje vezja. Ko je opis dokončan, naredimo sintezo vezja in simulacijo.

	×	
Sources for: Implementation	•	
- 🖻 Sestevalnik		
⊟ ∰ xc2c256-6TQ144		
🔤 🔚 🚆 Sestevalnik - Behavioral (Sestevalnik.vh	d)	
	_	
Sources Files 👸 Snapshots 🔯 Librarie	es	
	×	
Processes for: Sestevalnik - Behavioral		
Add Existing Source		
Create New Source		
🖉 🈼 Design Utilities		
🖶 🤡 User Constraints	Ξ	
🔄 📢 🕜 Implement Design		
ia- <mark>⊘⊘</mark> Synthesize - XST		
🕀 🔁 Translate		
i tit		
Cenerate Programming File	-	
4		
[®] ∰ Processes		

Najprej poskrbimo, da je v zavihku Sources izbrano: Implementation in da je označena datoteka z opisom vezja, ki ga želimo prevajati. Nato v zavihku Processes s klikom na + odpremo Implement Design in z dvojnim klikom poženemo sintezo vezja. Med sintezo program izpisuje poročilo v konzolo, kjer lahko preberemo opis morebitnih napak in opozoril (warning). Za razumevanje kakšno vezje je nastalo ob sintezi je zelo uporaben del poročila, ki opisuje najdene makro gradnike (npr. ROM,

v				
seštevalniki,				
števci)	Advanced HDL Synthesis Report			
	Macro Statistics	• •		
	# ROMS 16x2-bit POM	• 2 • 2		
	# Adders/Subtractors	: 1		
	3-bit adder	: 1		
	# Counters	: 5		
	14-bit up counter	: 1		
	4-bit up counter	: 4		
	# Registers	: 5		
	Flip-Flops	: 5		