
Miha Gjura, Red Pitaya
Andrej Trost, Fakulteta za elektrotehniko, UL

Uporabniški priročnik in
eksperimenti z Red Pitayo

marec 2025
1. izdaja

2

CIP – Kataložni zapis o publikaciji

3

Kazalo
1 Uvod v STEMlab 125-14 .. 8

1.1 Kako se povežemo na Red Pitayo? ... 10

1.2 Težave s povezavo .. 15

1.3 Uvod v aplikacije na Red Pitayi .. 16

2 Namestitev operacijskega sistema ... 17

2.1 Nalaganje slike operacijskega sistema ... 17

2.2 Prenos operacijskega sistema na SD kartico .. 18

3 Osciloskop in signalni generator ... 21

3.1 Nastavitve osciloskopa in generatorja ... 22

3.2 Meritve ... 24

3.3 Splošna priporočila za osciloskop... 25

4 Bodejev analizator .. 26

4.1 Kalibracija ... 27

4.2 Nastavitve merjenja in grafa .. 28

4.3 Nasveti za izvedbo meritev Bodejev analizator ... 29

5 Uvod v uporabo FPGA na Red Pitayi ... 30

5.1 Namestitev razvojnih orodij ... 30

5.2 Prenos FPGA projekta za Red Pitayo .. 37

5.3 Vivado in osnovni projekt v0.94 ... 39

5.4 Dodatek lastne komponente v sistem ... 47

5.5 Reprogramiranje FPGA na Red Pitayi ... 56

5.6 Razlike v postopku za druge modele Red Pitaye .. 60

6 Aplikacije v jeziku C in Python .. 61

6.1 Programiranje v C kodi ... 61

6.2 Prenos in prevajanje programske kode ... 64

6.3 Dodatne informacije .. 66

7 Viri ... 67

4

Kazalo slik
Slika 1: STEMlab 125-14 glavne značilnosti. Prilagojeno iz [1]. ... 8
Slika 2: Shema digitalnih priključkov na Red Pitayi STEMlab 125-14 [5] ... 9
Slika 3: Pravilna priključitev Red Pitaye [6] ... 9
Slika 4: Povezava na Red Pitayo preko brskalnika ... 10
Slika 6: Internetni vmesnik Red Pitaye .. 11
Slika 7: Program Bitvise SSH .. 12
Slika 8: Prva povezava preko SSH .. 12
Slika 9: Bitvise SSH po vpisu... 13
Slika 10: Prenos datotek .. 13
Slika 11: Povezava preko ukaznega poziva .. 14
Slika 12: Obvestilo o neuspešni potrditvi ključa .. 15
Slika 13: Spletni vmesnik Red Pitaye ... 16
Slika 14: Verzija operacijskega sistema in model Red Pitaye na spletnem vmesniku 17
Slika 14: Lokacija OS 1.04-28 ... 18
Slika 15: Program balenaEtcher .. 18
Slika 16: Izbira datoteke z operacijskim sistemom .. 19
Slika 17: Izbira tarče preslikave ... 19
Slika 18: Preslikaj ... 19
Slika 19: Prenos končan ... 20
Slika 20: Osciloskop in signalni generator [13] .. 21
Slika 21: Nastavitve vhodov [13] ... 22
Slika 22: Nastavitve izhodov [13] ... 22
Slika 23: Preletni način [13] ... 23
Slika 24: Pulzni način [13] .. 23
Slika 25: Meni proženja [13] .. 24
Slika 26: Meni meritev [13] ... 24
Slika 27: Bodejev analizator na Red Pitayi [14] ... 26
Slika 28: Kalibracija Bodejevega analizatorja [14] ... 27
Slika 29: Nastavitve merjenja [14] ... 28
Slika 30: Vivado arhiv ... 31
Slika 31: Namestitveni program Vivado 2020.1 - začetek ... 32
Slika 32: Začetno okno namestitvenega programa ... 32
Slika 33: Soglasja .. 33
Slika 34: Izbira programskega paketa .. 33
Slika 35: Izbira različice Vivada .. 34
Slika 36: Izbira naprav in komponent programske opreme .. 34
Slika 37: Izbira lokacije na disku .. 35
Slika 38: Povzetek namestitve ... 35
Slika 39: ModelSim izbira OS ... 36
Slika 40: Prenos ModelSim .. 36
Slika 41: Izbira različice ModelSim ... 37
Slika 42: LNIV Red Pitaya demonstracijski projekti ... 37
Slika 43: Programsko okolje Vivado... 39
Slika 44: Podokno z viri, načrtom in signali ... 40
Slika 45: Blokovna zgradba Red Pitaya v0.94 projekta [20] .. 42
Slika 46: Blokovna zgradba osciloskopa [24] ... 43
Slika 47: Blokovna zgradba generatorja poljubnih signalov [24] .. 44
Slika 48: Blokovna zgradba PID krmilnika [24] .. 44
Slika 49: Blokovna zgradba PID bloka [24] .. 45

5

Slika 50: Blokovna zgradba mešanih analognih signalov [24] ... 45
Slika 51: Blokovna zgradba modula za veriženje [24] ... 45
Slika 52: Blokovna zgradba procesnega sistema [20] .. 46
Slika 53: Priključitev MIMO PID komponente na vrhnjo komponento [20] .. 47
Slika 54: GPIO povezave [20] ... 48
Slika 55: Povezava komponente z ostalimi signali [20] ... 48
Slika 56: »red_pitaya_proc« po dodatku novih signalov... 49
Slika 57: Sprememba ostalih PID signalov ... 50
Slika 58: Končna povezava nove komponente .. 50
Slika 59: Dodatek nove komponente .. 51
Slika 60: Poimenovanje nove komponente ... 51
Slika 61: Določitev vhodno-izhodnih signalov ... 52
Slika 62: Spremembe v hierarhiji po dodatku nove komponente ... 54
Slika 63: Generacija bitstreama ... 55
Slika 64: Program Bitvise SSH Client [10] .. 56
Slika 65: Novo SFTP okno... 57
Slika 66: Novo terminalno okno .. 57
Slika 67: Funkcije za komunikacijo z FPGA registri .. 62
Slika 68: Začetni del glavne funkcije .. 62
Slika 69: Zaključek programa ... 63
Slika 70: Pozicija nastavitve »končne vrstične sekvence« v programu VSCode .. 64
Slika 71: Prenos programa na Red Pitayo s programom Bitvise SSH .. 64

Kazalo tabel
Tabela 1: Povezava med Red Pitaya OS in GitHub vejami [3] ... 38
Tabela 2: Razdelitev AXI naslovnega prostora na Red Pitayi [23] ... 43
Tabela 3: MODEL zastavice pri kreaciji Red Pitaya FPGA projekta [4] .. 60

6

Slovar kratic
A

• ADC – analogno-digitalni pretvornik (angl. Analog-to-Digital Converter)

• AIN – analogni vhod (angl. Analog Input)

• AMBA – arhitektura povezave na čipih (angl. Advanced Microcontroller Bus Architecture)

• AMD – ime podjetja (angl. Advanced Micro Devices)

• ARM – vrsta procesorja (angl. Advanced RISC Machines)

• ASG – generator poljubnih signalov (angl. /Arbitrary Signal Generator)

• AXI – protokol na ARM čipih (angl. Advanced eXtensible Interface)

B

• BRAM – bralno-pisalni pomnilnik (angl. Block Random Access Memory)

C

• CAN – vrsta serijske komunikacije (angl. Control Area Network)

• CH – kanal (angl. Channel)

• CMD – ukazni poziv (angl. Command prompt)

• CR – (angl. Carriage Return)

• CRLF – (angl. Carriage Return, Line Feed)

D

• DAC – digitalno-analogni pretvornik (angl. Digital-to-Analog Converter)

• DC – Enosmerna napetost/tok (angl. Direct Current)

• DDR – tip spomina (angl. Data Double Rate)

• DIO – digitalni vhod/izhod (angl. Digital Input/Output)

• DW – širina podatka (angl. Data Width)

E

• ECDSA – vrsta elektronskega podpisa (angl. Elliptic Curve Digital Signature Algorithm)

F

• FPGA – (angl. Field Programmable Gate Array)

G

• GCC – Linux prevajalnik kode (angl. GNU Compiler Collection)

• GNU – operacijski sistem (angl. Gnu's Not Unix)

• GPIO – splošni vhod/izhod (angl. General-Purpose Input/Output)

• GZIP – protokol za arhiviranje (angl. GNU ZIP)

H

• HDL – hardversko opisni jezik (angl. Hardware Description Language)

• HK – preostala funkcionalnost FPGA (angl. Housekeeping)

• HV – visoka napetost (angl. High Voltage)

I

• I2C – vrsta serijske komunikacije (angl. Inter-Integrated Circuit)

• ID – identifikacija (angl. Identification)

• IEEE – organizacija (angl. Institute of Electrical and Electronics Engineers)

• IN – okrajšava za vhod (angl. input)

• IO – vhod-izhod (angl. Input Output)

• IP – vrsta bloka v Vivadu (angl. Intellectual Property)

7

L

• LCR – vrsta inštrumenta (angl. Inductance (L), Capacitance (C), Resistance (R))

• LED – (angl. Light Emitting Diode)

• LF – (angl. Line Feed)

• LNIV – Laboratorij za Načrtovanje in Integracijo Vezij

• LV – nizka napetost (angl. Low Voltage)

M

• MAC – unikaten hardvareski naslov naprave (angl. Media Access Control)

• MIMO – več-vhodno in več-izhodno (vezje) (angl. Multiple-Input Multiple-Output)

O

• OS – operacijski sistem (angl. Operating System)

• OUT – okrajšava za izhod (angl. output)

P

• PID – (angl. Proportional-Integral-Derivative)

S

• Sa/s, Sps – vzorcev na sekundo (Samples per second)

• SCPI – (angl. Serial Commands for Programmable Instruments)

• SDR – softvaresko definiran radio (angl. Software-Defined Radio)

• SD – spominska kartica (angl. Secure Digital)

• SFTP – vrsta omrežnega protokola (angl. Secure File Transfer Protocol)

• SMA – vrsta priključka (angl. Surface Mount Assembly)

• SoC – sistem na čipu (angl. System-on-a-Chip)

• SPI – vrsta serijske komunikacije (angl. Serial Peripheral Interface)

• SSH – vrsta omrežnega protokola (angl. Secure Shell)

• STEM – (angl. Science, Technology, Engineering and Mathematics)

T

• TAR – protokol za arhiviranje (angl. Tape Archive)

• TCL – programski jezik za nadzor Vivada (angl. Tool Command Language)

U

• UART – vrsta serijske komunikacije (angl. Universal Asynchronous Receiver Transmitter)

• URL – naslov spletne strani (angl. Uniform Resource Locator)

• USB – univerzalno serijsko vodilo (angl. Universal Serial Bus)

V

• VHDL – vrsta HDL (angl. VHSIC Hardware Description Language)

• VNA – omrežni analizator (angl. Vector Network Analyzer)

• Vpp – Medtemenska napetost (angl. peak-to-peak voltage)

• VSC/VS Code – program za urejanje kode (angl. Visual Studio Code)

Z

• ZIP – format za arhiviranje. (sopomenka angl. “speed”). Ni kratica.

8

1 Uvod v STEMlab 125-14

STEMlab 125-14 [Slika 1] je odprtokodna FPGA razvojna plošča, ki združuje 14-bitne 125 MHz analogne vhode
in izhode z FPGA čipom (AMD Xilinx Zynq 7010 SoC), Ubuntu Linux operacijskim sistemom in možnostjo
oddaljenega dostopa preko Etherneta. Na razširitvenih konektorjih razvojne plošče so digitalni vhodi in izhodi,
ter priključki za digitalno komunikacijo preko UART, SPI, I2C, in CAN [Slika 2], kar uporabniku, skupaj s prej
naštetimi lastnostmi, omogoča široko področje uporabe [1].

Slika 1: STEMlab 125-14 glavne značilnosti. Prilagojeno iz [1].

Osnovni namen uporabe je izvedba več digitalnih inštrumentov (osciloskop, spektralni analizator, Bodejev
analizator, itd.), ki so na voljo kot aplikacije dostopne preko spletnega vmesnika. Naprednejši načini uporabe
vključujejo oddaljeno kontroliranje inštrumentov v programskem okolju Python, MATLAB oziroma LabVIEW,
pisanje lastnih programov v jeziku C ali Python, ki se izvajajo na Red Pitayi, ali popolnoma reprogramiranje
FPGA [1], [2], [3], [4].

Njena glavna prednost pred konkurenčnimi produkti je odprta programska koda, kar uporabniku omogoča
uporabo obstoječe kode za nadgradnjo ali popolno reprogramiranje. Zaradi lažjega razumevanja bomo v
nadaljevaju STEMlab 125-14 [5] imenovali Red Pitaya, po nazivu slovenskega podjetja, ki razvojno ploščo
proizvaja.

9

Slika 2: Shema digitalnih priključkov na Red Pitayi STEMlab 125-14 [5]

Preden se lahko uspešno povežemo na Red Pitayo moramo zagotoviti naslednje [6], [Slika 3]:

- Preverimo, da je SD kartica vstavljena v Red Pitayo.

- Priključimo napajanje v zunanji mikro USB konektor na spodnji strani Red Pitaye.

- Povežemo Red Pitayo v omrežje preko ethernet kabla.

Slika 3: Pravilna priključitev Red Pitaye [6]

10

1.1 Kako se povežemo na Red Pitayo?

Na Red Pitayo se lahko povežemo na dva načina:

- preko spletnega brskalnika [6],

- preko SSH (Secure Shell) povezave [7].

Ne glede na način povezave mora biti Red Pitaya na istem lokalnem omrežju kot naš računalnik. Napravo lahko
povežemo neposredno na ethernet priključek računalnika ali na ethernet vtičnico, ki je povezana z brezžičnim
usmerjevalnikom (router). Priporočljivo je, da je Red Pitaya, v primeru uporabe aplikacij, neposredno
priključena v brezžični usmerjevalnik, saj to izboljša delovanje naprave. [8]

Kaj želimo narediti z Red Pitayo, močno vpliva na izbiro načina povezave.

1.1.1 Povezava preko brskalnika

Povezavo preko brskalnika uporabimo, ko želimo Red Pitayo uporabljati kot osnoven inštrument ali pa jo
kontrolirati v okoljih Python, MATLAB, ali LabVIEW z našega računalnika. Google Chrome je priporočen
brskalnik za povezavo [9].

V splošnem se lahko na Red Pitayo povežemo z vpisom »rp-xxxxxx.local« v URL okno brskalnika, kjer »xxxxxx«
predstavlja zadnjih šest znakov v MAC naslovu Red Pitaye [Slika 4]. MAC naslov je natisnjen na Ethernet
konektorju. V ozadju se lokalni naslov prevede v IP naslov na katerem se trenutno nahaja Red Pitaya. [6]

V okviru teh vaj, pa so vse Red Pitaye že konfigurirane na statičen IP naslov, tako da povezava preko lokalnega
naslova ne bo delovala. Za povezavo v URL okno brskalnika vpišemo statičen IP naslov »192.168.1.15«.

Ob uspešni povezavi se odpre internetni vmesnik Red Pitaye [Slika 5]:

Slika 4: Povezava na Red Pitayo preko brskalnika

11

Slika 5: Internetni vmesnik Red Pitaye

V primeru težav s povezavo

Preverite naslednje [9]:

- Status LED indikatorjev. Zelena (napajanje) in modra (FPGA slika naložena) morata konstantno goreti,

rdeča (stanje procesorja) utripa v ritmu srčnega utripa, oranžna pa vsake toliko časa oziroma, ko Red

Pitaya dostopa do podatkov na SD kartici.

o Modra LED ne gori – preverite če ste vklopili napajanje v pravi mikro USB konektor in če je SD

kartica prisotna v napravi

- Preverite, če se Red Pitaya nahaja na istem lokalnem omrežju kot računalnik. To storite tako, da odprete

Ukazni Poziv (CMD/Command Prompt/Terminal) in vanj vpišete »ping 192.168.1.15« oziroma »ping

rp-xxxxxx.local«.

- Red Pitaya potrebuje približno 30 sekund po priključitvi napajanja, da se zažene in je vidna na omrežju.

- Izklopite blokiranje oglasov (adblocker-je) v brskalniku, saj lahko vplivajo na pravilno delovanje

internetnega vmesnika.

- V primeru, da se aplikacije velikokrat ponovno zaganjajo in je posledično izvajanje meritev težko

izvedljivo, poizkusite priklopiti Red Pitayo v brezžični usmerjevalnik, saj je spletni vmesnik v tem načinu

bolj stabilen.

12

1.1.2 SSH povezava

SSH povezavo uporabimo, ko želimo izvajati programe v jeziku C oziroma Python na sami Red Pitayi, dostopati
do podatkov in operacijskega sistema Linux ali reprogramirati FPGA.

V okviru vaj se bomo na operacijski sistem Red Pitaye povezali s programom Bitvise SSH Client [10], saj tako
lažje prenašamo datoteke na in iz Red Pitaye. Enako lahko storimo tudi direktno preko Ukaznega poziva
(terminala), kar bomo omenili na koncu tega poglavja.

Pri zagonu programa se odpre okno na [Slika 6].

Slika 6: Program Bitvise SSH

V polje »Host« vpišemo IP naslov Red Pitaye (192.168.1.15), preverimo polje »Port« (22), v polje »Username«
vpišemo root, ter v polje »Password« prav tako root.

Ob kliku na gumb »Log in« se ob prvi povezavi pojavi pojavno okno na [Slika 7]:

Slika 7: Prva povezava preko SSH

13

Klinemo »Accept and Save«. Opazimo lahko, da se okno programa sedaj spremeni [Slika 8]:

Slika 8: Bitvise SSH po vpisu

Sedaj lahko do terminala na Red Pitayi dostopamo s klikom na »New terminal console«. Za prenos datotek pa
uporabimo »New SFTP window«, kjer lahko datoteke med našim računalnikom in Red Pitayo prenašamo tako,
da jih povlečemo iz ene na drugo stran:

Slika 9: Prenos datotek

Na levi se nahaja datotečni sistem našega računalnika, na desni strani pa datotečni sistem Red Pitaye [Slika 9].

14

1.1.3 Povezava preko Ukaznega Poziva

Na Red Pitayo se lahko povežemo tudi direktno preko ukaznega poziva. To storimo tako, da v okno Ukaznega
Poziva vpišemo »ssh root@192.168.1.15« [Slika 10]. Po vpisu bomo pozvani za vpis gesla (»root«) [7]. Če se
na Red Pitayo s posameznega računalnika vpisujemo prvič, moramo potrditi povezavo z ECDSA ključem.

Slika 10: Povezava preko ukaznega poziva

Od tu naprej lahko za prenos datotek med računalnikom in Red Pitayo uporabljamo Linux ukaze.

Tukaj je hiter seznam najpomembnejših:

- cd – pomik med datotečnim sistemom

- ls – izpis datotek v trenutnem direktoriju

- nano – odprtje datoteke v urejevalniku besedila

- rm – izbris datotek

- pwd – pot trenutnega direktorija

- exit – zaprtje povezave

Za prenos datotek med Red Pitayo in računalnikom odprite še eno okno Ukaznega poziva, vendar se ne
povežite na Red Pitayo. Uporabite ukaz »scp«, tukaj je primer:

»scp -r pot/do/datoteke/na/računalniku root@192.168.1.15:/root« za prenos datoteke iz računalnika na
Red Pitayo

»scp -r root@192.168.1.15:/root/pot/do/datoteke/na/RedPitayi pot/do/datoteke/na/računalniku« za
prenos datoteke iz Red Pitaye na računalnik

mailto:root@192.168.1.15
mailto:root@192.168.1.15:/root
mailto:root@192.168.1.15:/root/pot/do/datoteke/na/RedPitayi%20pot/do/datoteke/na/računalniku

15

1.2 Težave s povezavo

V primeru, da se večkrat povežete na Red Pitayo, se lahko zgodi, da pri vzpostavitvi SSH povezave naletite na
naslednje obvestilo [Slika 11]:

Slika 11: Obvestilo o neuspešni potrditvi ključa

Ne skrbite nič ni narobe z Red Pitayo ali z vašim računalnikom, vse kar se je zgodilo v ozadju je menjava IP
naslova, ki ga brezžični vmesnik dodeli Red Pitayi. Za popravilo v Ukazni poziv napišite:

»ssh-keygen -R 192.168.1.15« oziroma »ssh-keygen -R rp-xxxxxx.local«

S čimer izbrišete trenutni ECDSA ključ in nato ponovno vzpostavite SSH povezavo.

16

1.3 Uvod v aplikacije na Red Pitayi

V prejšnjem poglavju smo se naučili kako se lahko povežemo na Red Pitayo, tokrat pa se bomo posvetili
digitalnim inštrumentom na Red Pitayi kot sta osciloskop in signalni generator ter Bodejev analizator, ki jih
bomo uporabljali tekom vaj.

Za dostop do digitalnih inštrumentov se moramo na Red Pitayo povezati preko spletnega brskalnika. Za zagon
posameznega digitalnega inštrumenta kliknite na pripadajočo ikono [Slika 12].

Slika 12: Spletni vmesnik Red Pitaye

V uporabniškem priročniku sta podrobneje predstavljena osciloskop in Bodejev analizator. Večina ostalih
digitalnih inštrumentov ima skoraj identične nastavitve in način upravljanja kot osciloskop, zato z njimi ne
boste imeli večjih težav.

Za zagon vektorskega analizatorja omrežja (VNA – »Vector Network Analyzer«) in LCR metra je potrebna
dodatna razširitvena plošča za Red Pitayo, ki omogoči funkcionalnost teh dveh inštrumentov.

Za dostop do tržnice aplikacij (»Application marketplace«), potrebuje Red Pitaya povezavo na internet, npr.
preko brezžičnega usmerjevalnika.

Težave z Red Pitayo

Če imate težave z Red Pitayo, ki jih ne morete rešiti z katero izmed zgoraj navedenih opcij ali ponovno
namestitvijo operacijskega sistema:

• najprej se posvetujte z profesorjem

• v skrajnem primeru pišite na support@redpitaya.com. V sporočilu podajte trenutni operacijski sistem

Red Pitaye, model razvojne plošče, ter podroben opis napake.

mailto:support@redpitaya.com

17

2 Namestitev operacijskega sistema

V primeru, da ste reprogramirali Red Pitayo, ponesreči izbrisali ali modificirali del operacijskega sistema in ne
veste, oziroma se ne morete vrniti v prejšnje stanje, ali se na Red Pitayo ne morete več povezati, je
najenostavnejša rešitev težav izbris in ponovna namestitev operacijskega sistema.

Pred začetkom ponovne namestitve operacijskega sistem je priporočljivo, da naredite kopije vseh pomembnih
datotek in jih shranite na vaš računalnik, saj bodo vse datoteke in spremembe v programski kodi, ki se nahajajo
na Red Pitayi, izbrisane.

Za namestitev operacijskega sistema boste potrebovali čitalnik mikro SD kartic in program balenaEtcher, ki ga
lahko dobite tukaj [11].

2.1 Nalaganje slike operacijskega sistema

V sklopu vaj se uporablja Red Pitaya operacijski sistem 1.04-28. Verzijo operacijskega sistema in model
razvojne plošče Red Pitaya lahko preverite v spodnjem desnem kotu spletnega vmesnika [Slika 13].

Slika 13: Verzija operacijskega sistema in model Red Pitaye na spletnem vmesniku

Slike Red Pitayinega operacijskega sistema so dostopne tukaj .

Operacijski sistemi so urejeni po poglavjih od najnovejših do najstarejših. Zelo pomembna je razlika med OS
2.00 in OS 1.04, saj je OS 2.00 enak za vse modele Red Pitaye (STEMlab 125-14, SDRlab 122-16, itd.), medtem
ko ima OS 1.04 svojo različico za vsak posamezen model Red Pitaye [12].

https://etcher.balena.io/
https://redpitaya.readthedocs.io/en/latest/quickStart/SDcard/SDcard.html#prepare-sd-card

18

Pri vajah uporabljamo OS 1.04-28, ki ga najdete v poglavju »1.04 OS« pod »STEMlab 125-14 & STEMlab 125-
10«:

Slika 14: Lokacija OS 1.04-28

Operacijski sistem prenesete s klikom na verzijo operacijskega sistema (označeno z zeleno na [Slika 14]).
Velikost stisnjene datoteke je približno 0,7 GB. Po prenosu stisnjene datoteke ni potrebno razširjati, saj
program balenaEtcher to naredi avtomatsko tekom postopka namestitve.

2.2 Prenos operacijskega sistema na SD kartico

Vstavite mikro SD kartico v čitalnik SD kartic in ga priključite v računalnik. Odprite program balenaEtcher [Slika
15].

Slika 15: Program balenaEtcher

19

Postopek prenosa poteka v treh korakih:

1. Izbira datoteke – Klinknite na gumb »Preslikaj iz datoteke« (»Flash from file«) in poiščite preneseno

stisnjeno datoteko z operacijskim sistemom [Slika 16].

Slika 16: Izbira datoteke z operacijskim sistemom

2. Izbira tarče – Kliknite na gumb »Izberi tarčo« (»Select target«) in izberite disk z priključeno mikro SD

kartico. Program avtomatsko skrije vse sistemske diske pod zavihek »Pokaži skrite« (»Show hidden«)

in jih označi z rdečo, kar minimizira verjetnost preslikave na napačno mesto. Odkljukajte izbrani disk in

pritisnite »Izberi« (»Select«) [Slika 17].

Slika 17: Izbira tarče preslikave

3. Preslikava – Pritisnite gumb »Preslikaj!« (»Flash!«) [Slika 18].

Slika 18: Preslikaj

20

Pojavilo se bo sistemsko pojavno okno za potrditev procesa, kjer izberite »Potrdi«. Nato, pa se bo preslikava
izvedla v treh korakih:

- Razširitev slike operacijskega sistema (modra)

- Zapisovanje slike na mikro SD kartico (vijolična)

- Preverjanje zapisa (zelena)

Med postopkom se bodo pojavila različna pojavna okna datotečnega sistema, z zahtevami po formatiranju
diska, neuspešno odprtimi datotekami, itd., saj bo Windows neuspešno poizkušal odpreti Linux datoteke na
mikro SD kartici. Vsa pojavna okna lahko brez skrbi zaprete oziroma prekličete operacije. Ob končanem
prenosu boste zagledali sledeče okno [Slika 19].

Slika 19: Prenos končan

Lahko se zgodi, da bo program sporočil neuspešen prenos (značilno pri preslikavi 2.00 OS), kar pa ne vpliva na
sam prenesen operacijski sistem. Težavo lahko odpravimo z izbrisom particij na SD kartici preko programa
»Upravitelja računalnika« (angl. »Computer Manager«) in ponovno preslikavo OS.

Zadnji korak je odklopitev čitalnika kartic iz računalnika (balenaEtcher avtomatsko odstrani USB napravo) in
vstavitev mikro SD kartice nazaj v Red Pitayo.

21

3 Osciloskop in signalni generator

Pri zagonu te aplikacije Red Pitayo spremenimo v dvokanalni osciloskop in signalni generator. Vsak kanal ima
vzorčno frekvenco 125 MSa/s, 14-bitno resolucijo, ter je neodvisen od ostalih kanalov. Teoretična pasovna
širina osciloskopa je 62 MHz (Nyquistova frekvenca), vendar v praksi dobro deluje do maksimalno 20 MHz.
Programsko smo omeji na zajem in generacijo signalov do 50 MHz.

Nekatere nastavitve prikazane na slika v tem poglavju niso na voljo na naši različici operacijskega sistema (1.04-
28), saj so slike vzete iz Red Pitayine spletne strani, ki prikazuje novejšo različico inštrumenta [13].

Slika 20: Osciloskop in signalni generator [13]

Območje grafa na [Slika 20] prikazuje vhodne in izhodne signale. Na robovih grafa lahko vidimo več kurzorjev,
ki so povezani s posameznimi signali:

- Časovni zamik – moder navpičen kurzor označen s T na zgornjem robu grafa

- Nivo proženja – bel vodoraven kurzor označen s T na desnem robu grafa

- Ničelni nivoji kanalov – kurzorji na levem robu grafa v barvah posameznih kanalov

Kurzorje lahko premikamo z klikom in povlekom. Časovni zamik in nivo proženja skupaj določata prožilec
oziroma točko proženja. Ničelni nivoji kanalov se večinoma uporabljajo za razporeditev signalov po grafu za
lažjo primerjavo in izvedbo meritev [13].

Celoten graf je razdeljen na 10x10 pravokotnikov, kjer vsak pravokotnik predstavlja en razdelek [Slika 20]. Tako
enote časovne kot napetostne skale so podane v sekundah oziroma voltih na razdelek (pravokotnik) s čimer
dobimo predstavo o velikosti signalov.

Ob prvem zagonu aplikacije se lahko zgodi, da nekateri izmed kanalov niso vidni, kar rešimo tako da označimo
gumb »prikaz« (»show«) pod nastavitvami posameznih kanalov.

22

Spletni vmesnik osciloskopa in signalnega generatorja je, poleg območja glavnega grafa razdeljen na šest delov
[Slika 20] [13]:

1. Meni z glavnimi nastavitvami aplikacije – Zaustavitev in zagon inštrumenta, izvoz grafa in avtomatsko

skaliranje.

2. Nastavitve kanalov – Urejanje nastavitev posameznih vhodnih in izhodnih kanalov, prožilnika,

kurzorjev in meritev.

3. Skaliranje osi – Spreminjanje skal za amplitudo in čas

4. Podatki o časovni skali in proženju – Prikaz trenutne nastavitve časovne skale, nastavitev prožilnika in

vzorčne frekvence

5. Amplitudna skala kanalov – amplitudna skala vsakega izmed prikazanih kanalov

6. Prikaz meritev – prikaz trenutno nastavljenih meritev

3.1 Nastavitve osciloskopa in generatorja

Do nastavitev posameznih kanalov osciloskopa dostopamo s klikom na zobnik poleg želenega kanala.

V nastavitvah vhodnih kanalov [Slika 21] lahko nastavimo:

- Prikaz vhodnega kanala na grafu

- Invertiramo prikaz na grafu

- Konfiguriramo atenuacijo sond

- Spreminjamo vertikalni zamik kanala

- Nastavimo vhodno atenuacijo, ki naj bo enaka kot položaj vhodnih

mostičnikov direktno za SMA priključki.

V nastavitvah izhodov [Slika 22] lahko nastavimo:

- Aktivnost izhoda (ON/OFF)

- Prikaz izhoda na grafu

- Obliko izhodnega signala (sinusni, trikoten, kvadratni, žagasti, itd.)

- Nastavimo preletni (»sweep«) ali pulzni (»burst«) način delovanja

- Izberemo tip prožilca (notranji ali zunaji)

- Frekvenco izhodnega signala (1 Hz – 50 MHz)

- Amplitudo (0-1 V)

- Odmik (»offset«) – vsota amplitude in odmika ne sme preseči maksimalne

oziroma minimalne izhodne napetosti +-1 V.

- Fazo

- Obratovalni cikel (»Duty cycle«)

Signal se na izhodu začne generirati s pritiskom na gumb »ON«. S klikom na »TRIG
GEN« lahko ponovno sprožimo generacijo signala, kar je koristno v pulznem načinu
delovanja.

Slika 22: Nastavitve izhodov [13]

Slika 21: Nastavitve vhodov [13]

23

V nastavitvah preletnega (»sweep«) načina [Slika 23] lahko določimo:

- Začetno in končno frekvenco preleta

- Čas preleta

- Način preleta (linearni ali logaritmičen)

- Smer preleta (normalna/gor ali gor-dol)

V nastavitvah pulznega (»burst«) načina [Slika 24] lahko določimo:

- Število period v enem pulzu

- Število ponovitev (število vseh pulzov)

- Neskončno pulzov (»repetitions inf«) – z označbo se pulzni signal ob sprožitvi

ponavlja v neskončnost

- Perioda pulzov – čas med začetkom prvega in začetkom naslednjega pulza

- Sprožitev generatorja (»trig gen«)

POZOR: ob vklopu preletnega ali pulznega načina le-ta ostane vklopljen dokler ga ne izklopimo!
Vklop in izklop generatorja oziroma izhod iz aplikacije ne resetira nastavitev.

3.1.1 Nastavitve matematičnega kanala

V matematičnem kanalu lahko izvajamo preproste matematične operacije nad obema vhodnima signaloma.
Na primer, seštevanje, odštevanje, množenje, integracija, itd.

Slika 23: Preletni način [13]

Slika 24: Pulzni način [13]

24

3.1.2 Nastavitve prožilnika

Prožilnik (»trigger«) je izjemno pomemben parameter za osciloskop, saj
določa pogoj za zajem vhodnih signalov, ter v pravilni nastavitvi ohranja
stabilno sliko grafa.

V nastavitvah prožilnika [Slika 25] lahko nastavimo:

- Vir proženja (vhod 1, vhod 2, ali zunanji digitalni vhod DIO0_P)

- Fronta proženja – pozitivna ali negativna

- Nivo proženja

- Histereza proženja – minimalna vrednost za katero mora biti

presežen nivo proženja, da se prožilnik sproži. Hkrati pa preprečuje

zaporedna proženja zaradi šuma.

- Način proženja:

o Avtomatski – graf se osvežuje avtomatsko

o Normalen – graf se osveži vsakič, ko so doseženi pogoji

proženja

o Enkraten (»single«) – graf se osveži ob prvem pogoju

proženja, nato pa se ne osvežuje več (zajem podatkov se

ustavi).

- Časovni zamik z ponastavitvijo (»reset«)

Časovni zamik, fronta proženja in nivo proženja skupaj določata prožilec oziroma točko proženja, ki jo na grafu
določa presečišče kurzorja za časovni zamik in kurzorja za nivo proženja.

3.1.3 Nastavitve kurzorjev

Na vsako os lahko dodamo po dva kurzorja, ki olajšata meritve. Na vsakem kurzorju je zapisana vrednost osi,
v primeru dveh kurzorjev na isti osi pa tudi razdalja med njima.

Vsi kurzorji so vezani na enega izmed vhodnih kanalov ali matematični kanal.

3.2 Meritve

V meniju za meritve [Slika 26] lahko nastavimo meritve, ki jih želimo izvajati na
vhodnih signalih. Najprej izberemo želeno meritev iz spustnega menija.
Izbiramo lahko med medtemensko, maksimalno, srednjo, minimalno in RMS
napetostjo, ter frekvenco, periodo, ter obratovalnim ciklom. Nato izberemo
kanal na katerem želimo izvajati meritve, ter kliknemo »zaključi« (»done«).

Vse izvajajoče se meritve so zapisane v razdelku 6 na glavnem grafu. Meritev
lahko pobrišemo tako da kliknemo nanjo na listi meritev.

Slika 25: Meni proženja [13]

Slika 26: Meni meritev [13]

25

3.3 Splošna priporočila za osciloskop

1. Avtomatsko skaliranje grafa nam velikokrat naredi več dela, kot pri ročnem skaliranju osi. Predvsem,

če na enem izmed vhodov nimamo signalov, saj takrat avtomatsko skaliranje v iskanju optimalnih

nastavitev popolnoma približa amplitudno skalo.

2. Pri merjenju pulznih signalov, je izredno pomembno, da preklopimo osciloskop v normalen način

proženja, saj so pulzni signali velikokrat izjemno kratki in jih v avtomatskem načinu zamudimo.

3. Če je osciloskop v enkratnem načinu proženja, ga je potrebno po vsaki meritvi ponovno zagnati s klikom

na gumb »run« v zgornjem desnem kotu.

4. Če generator generira preletni (»sweep«) ali pulzirajoč (»burst«) signal, in ga želimo preklopiti nazaj v

način neprekinjene generacije, moramo izklopiti pulzirajoč oziroma pulzni način v istoimenskem

meniju.

5. Pri generaciji in merjenju visokofrekvenčnih signalov (nad 100 kHz) je priporočena uporaba 50-Ω

zaključnih uporov na hitrih analognih izhodih, s čimer zaključimo izhodno impedanco generatorja. To

velja tudi pri splošni uporabi Red Pitayinega generatorja, saj v nasprotnem primeru lahko pride do

odbojev signala na prenosni liniji.

6. Nikoli ne priključite sond za osciloskop na Red Pitayin generator. Sonde so namenjene merjenju

signalov. Z generacijo signala preko sond, le-tega popačite in posledično pridete do napačnih meritev.

Reševanje težav z osciloskopom

- V primeru, da signal na grafu ni stabilen, oziroma se premika v levo ali v desno, je potrebno preveriti

nastavitve proženja. Največkrat je proženje nastavljeno na napačen vhodni kanal ali pa je nivo proženja

nad maksimalno vrednostjo signala.

- Če kurzor za nivo proženja ni viden na grafu, kar se lahko zgodi pri povečevanju amplitudne skale,

pojdite v meni proženja in nastavite nivo proženja na 0. Alternativno, zmanjšajte amplitudno skalo in

ga povlecite bližje osnovnemu nivoju signala.

- V primeru, da na analognih vhodih ne zaznavate signala, poizkusite odstraniti kratkostičnike za hitrimi

analognimi vhodi in jih ponovno namestiti na nastavljeno napetostno območje (LV ali HV), saj se včasih

zgodi, da imajo slab kontakt.

- V primeru zaznavanja nepričakovanih signalov povežite analogne izhode direktno na analogne vhode

ter preverite ustreznost generacije (na primer z generacijo 1 kHz sinusa). Če še vedno zaznavate

nepričakovane signale, je možno, da je nekdo pred vami modificiral FPGA sliko, ki se naloži ob zagonu

aplikacije. Najlažja rešitev je ponovna namestitev operacijskega sistema ali sprememba v nastavitvah

aplikacije (preverite katera slika se naloži ob zagonu).

26

4 Bodejev analizator

S pomočjo Bodejevega analizatorja lahko izmerimo amplitudni in fazni odziv vezij v odvisnosti od frekvence,
kar je izredno uporabno pri analizi stabilnosti kontrolnih sistemov (na primer pri načrtovanju povratnih zank v
napajalnikih), načrtovanju analognih filtrov, ipd. Frekvenčno območje Bodejvega analizatorja je med 1 Hz in
60 MHz [14].

Bodejev analizator na Red Pitayi, je tako kot osciloskop, zanesljiv do približno 20 MHz, saj z vzorčno frekvenco
125 MHz pri merjenju signalov višjih frekvenc lahko nezanesljive rezultate zaradi premajhnega števila točk na
periodo.

Slika 27: Bodejev analizator na Red Pitayi [14]

Bodejev graf [Slika 27] je sestavljen iz dveh meritev, amplitudnega in faznega odziva merjenega vezja v
odvisnosti od frekvence. Amplitudni odziv, prikazan z rumeno barvo, je merjen v decibelih. Pretvorbo med
amplitudnim odzivom v voltih in amplitudnim odzivom v decibelih izvedemo z (1):

𝐴[𝑑𝐵] = 20 log (
𝑈𝑖𝑧ℎ[𝑉]

𝑈𝑣ℎ[𝑉]
)

(1)

Fazni odziv, prikazan z zeleno barvo, je merjen v stopinjah in predstavlja fazni zamik med vhodnim in izhodnim
signalom merjenega vezja. Omejen je med ±180 stopinj.

Amplitudna skala se nahaja na levi strani grafa, fazna pa na desni strani. Frekvenčna skala je v logaritmičnem
merilu, kar omogoča lažji pregled odziva vezja pri različnih frekvencah [Slika 27].

Poleg območja grafa je Bodejev analizator razdeljen še na tri druga območja [14]:

1. Meni z nastavitvami aplikacije – Zaustavitev in pogon inštrumenta, izvoz podatkov v obliki grafa ali

CSV datoteke in kalibracija.

2. Nastavitve merjenja in grafa – konfiguracija frekvenčnega območja, števila korakov, mej grafa,

postavitev kurzorjev, ipd.

3. Podatki o trenutni meritvi – prikaz trenutnega koraka in trenutne frekvence.

27

4.1 Kalibracija

Pred prvo meritvijo posameznega vezja je načeloma potrebno izvesti kalibracijo. Zaradi enostavnosti izvedbe
in časovnih omejitev jo bomo na vajah izpustili. Posledično bo v naših meritvah prisoten tudi vpliv Red Pitaye,
kabelskih povezav in preizkusne plošče, na kateri je sestavljeno vezje. Kljub temu je vpliv vseh treh na
karakteristiko dovolj majhen, da ga lahko zanemarimo.

Kalibracijo izvedemo z klikom na gumb »kalibriraj« (»calibrate«) v nastavitvah aplikacije, pri čimer se pojavi
naslednje okno [14], [Slika 28]:

Na tej točki moramo poskrbeti za pravilno povezavo vezja in Red Pitaye:

- Kratkostičnike na Red Pitayi, ki se nahajajo za hitrimi analognimi vhodi IN1 in IN2, nastavimo v

nizkonapetostni način (LV).

- Vhod 1 in izhod 1 Red Pitaye povežemo skupaj in ju priključimo na vhod testnega vezja. Ne pozabimo

dodati 50-Ω zaključnega upora na izhod Red Pitaye.

- Vhod 2 vežemo na izhod testnega vezja

- Kratko sklenemo vhod in izhod testnega vezja.

Zgoraj opisana vezava je zelo pomembna, saj je v primeru napačne povezave kalibracija neustrezna.

Potem, ko preverimo povezave, kliknemo na gumb »kalibriraj« (»calibrate«) [Slika 28]. Red Pitaya bo
avtomatsko izvedla 500 točkovno meritev na frekvenčnem razponu med 100 Hz in 62.5 MHz. Kalibracija na
operacijskem sistemu 1.04-28 traja približno 3 minute, na različicah OS nad 2.04-35 pa je veliko hitrejša. Zaradi
dolžine kalibracije je stabilnost povezave izrednega pomena, saj se v primeru nestabilne povezave aplikacija
lahko ponovno naloži, kar prekine postopek kalibracije.

Slika 28: Kalibracija Bodejevega analizatorja [14]

28

V primeru, da med kalibracijo opazimo meritve amplitude in faze, prikazane z oranžno oziroma rjavo barvo,
kar nakazuje neveljavne meritve, je potrebno postopek kalibracije prekiniti. Najpogostejši vzrok so slabe ali
prekinjene povezave v testnem vezju. Še enkrat preverimo vse povezave in komponente ter ponovno začnemo
postopek kalibracije.

Po zaključeni kalibraciji se bo indikator za kalibracijo v "nastavitvah merjenja in grafa" obarval zeleno.
Po končani kalibraciji ne pozabite odstraniti kratkostičnika med vhodom in izhodom testnega vezja.

4.2 Nastavitve merjenja in grafa

V zavihku nastavitev (»settings«) [Slika 29] upravljamo z nastavitvami meritev. Bodejev analizator ob vsaki
meritvi generira določeno število period sinusnega signala, ki jih po prehodu skozi vezje ponovno izmeri.

Spreminjamo lahko naslednje nastavitve [14]:

• Začetna frekvenca merjenja

• Končna frekvenca merjenja

• Število korakov – skupno število meritev, ki so enakomerno razporejene med

začetno in končno frekvenco

• Skala – linearna ali logaritmična, vpliva na frekvenčni razpored meritev

• Število period – število period v eni meritvi

• Amplituda – amplituda sinusnega signala. V primeru, da naše testno vezje

ojačuje signale, je priporočeno, da se amplituda generiranih pulzov zmanjša, saj

lahko v nasprotnem primeru pridemo preko napetostnih mej vhodov (±1 V).

• Povprečevanje (»averaging«) – vklopljeno ali izklopljeno. Določa ali je končna

meritev povprečje vseh poslanih period ali zadnja izvedena meritev.

• DC odmik (»DC bias«) – DC napetostni odmik signala od mase.

• Vhodna napetostna meja analize (»analysis input threshold VPP«) – meritve

periodičnih signalov, katerih medtemenska napetost je manjša od praga, se

nadomestijo z minimalno vrednostjo praga (za namene izračuna).

Slika 29: Nastavitve merjenja [14]

V nastavitvah grafa lahko spreminjamo meje amplitudne in fazne osi. V osnovi je vklopljeno avtomatsko
skaliranje osi, zato se z ročnim nastavljanjem po navadi ne ukvarjamo.

Na vsako os lahko, enako kot pri osciloskopu, za lažjo izvedbo meritev, dodamo dva kurzorja.

29

4.3 Nasveti za izvedbo meritev Bodejev analizator

1. Dvakrat preverite vse povezave med Red Pitayo in testnim vezjem, saj lahko ob napačni povezavi

vhodov hitro pridemo do popolnoma drugačnih rezultatov. Primer, pri meritvah pasivnih filtrov je v

primeru narobe obrnjenih vhodov (vhod 1 vezan na izhod testnega vezja, vhod 2 pa na vhod), celotna

karakteristika zrcaljena.

2. V primeru, da med meritvijo opazite izris amplitude in faze z oranžno oziroma rjavo barvo, je potrebno

meritev ponoviti, saj so meritve neveljavne. Najpogostejši vzrok so slabe oziroma prekinjene povezave

v testnem vezju (preverite, da sonde niso iztaknile katere izmed komponente). Še enkrat preverite vse

povezave in komponente in ponovno izvedite meritev.

3. Ne pozabite priključiti obeh konektorjev na sondi v vezje (črni krokodilček mora biti povezan na maso).

4. V veliki večini primerov ne potrebujete več kot 100 korakov. Meritve na vajah so namenjene

spoznavanju z delovanjem vezij in ne zelo podrobni analizi. Z zmanjšanjem števila korakov tudi

prihranite čas.

5. Nikoli ne priključite sond za osciloskop na Red Pitayin generator. Sonde so namenjene merjenju

signalov. Z generacijo signala preko sond, le-tega popačite in posledično pridete do napačnih meritev.

Reševanje težav: Bodejev analizator

- Pri nekaterih novejših različicah operacijskega sistema je prisotna napaka v kodi, zaradi katere je

potrebno zagnati meritev preden lahko dostopamo in spreminjamo nastavitve aplikacije.

- Po kalibraciji so nastavitve meritve nastavljene na takšne kot so bile uporabljene v kalibraciji

(frekvenčni razpon 100 Hz – 62.5 MHz, 500 točk).

- Preverite, da je atenuacija sond nastavljena na 1x, saj trenutne različice spletnega vmesnika še ne

omogočajo sprememb atenuacije.

- V primeru, da na analognih vhodih ne zaznavate signala, poizkusite odstraniti kratkostičnike za hitrimi

analognimi vhodi in jih ponovno namestiti na nastavljeno napetostno območje (LV ali HV), saj se včasih

zgodi, da imajo slab kontakt.

- Obstaja napaka v kodi Bodejevega analizatorja pri izračunu vrednosti amplitudnega odziva za majhne

signale (opazna pri velikem razmerju vhodne in izhodne napetosti (npr. uporovni delilnik 1:100)).

30

5 Uvod v uporabo FPGA na Red Pitayi

V tem poglavju se bomo posvetili vezju FPGA na Red Pitayi, kaj vse vključuje, kako ga modificiramo, generiramo
bitstream in na koncu reprogramiramo FPGA. Navodila so namenjena operacijskemu sistemu 1.04-28 za Red
Pitayo STEMlab 125-14, vendar z nekaj modifikacijami delujejo tudi na ostalih OS in modelih Red Pitaye, ki jih
bomo obravnavali na koncu tega poglavja.

V okviru vaj bomo uporabljali programski opremi Vivado 2020.1 [15] in ModelSim [16].

5.1 Namestitev razvojnih orodij

V okviru vaj bomo uporabljali dve razvojni okolji: Vivado 2020.1 za pisanje kode in generacijo datoteke za
reprogramiranje FPGA, ter ModelSim za simulacijo ustvarjenih komponent in HDL kode. Za uspešno
namestitev okolja potrebujemo okrog 100 GB prostora na našem računalniku (celotno okoje na koncu zavzema
okrog 30 GB prostora na disku).

Obrazložitev uporabe Vivada 2020.1

Red Pitayini FPGA projekti so narejeni v orodju Vivado 2020.1 [17]. Nekaterim izmed nas se lahko poraja
vprašanje, zakaj ni uporabljena najnovejša različica orodja Vivado (ali Vitis). Različne verzije Vivada se med
seboj razlikujejo glede podprtih ukazov in že narejenih komponent, kar hitro povzroči nekompatibilnost
starejših različic projektov z novejšimi, še posebej, ko so v igri skripte s stotinami vrstic ukazov, ki poskrbijo za
avtomatsko vzpostavitev projekta. Predstavljajmo si, da smo ravnokar napisali 1000 stransko knjigo v
programu Word, nato pa naložimo novejši urejevalnik in naenkrat oblika besedila ni več enaka (spremeni se
velikost besedila, izbrani font ni več na voljo, črka ž naenkrat ne obstaja več…), zato moramo iti še enkrat čez
celotno besedilo in popraviti napake.

Uporaba novejših različic je mogoča, vendar zahteva dobro poznavanje orodij in veliko časa za uspešno
implementacijo, zato za učne namene priporočamo uporabo tiste različice v kateri je projekt prvotno
zasnovan.

31

5.1.1 Vivado 2020.1

Za namestitev Vivada 2020.1 pojdimo na AMD Xilinx spletno stran s prenosi. Na levi strani je stolpec z
različicami okolja, kjer kliknemo na »Vivado Arhiv«. V arhivu poiščemo različico 2020.1 [Slika 30].

Slika 30: Vivado arhiv

S klikom na »2020.1« se odpre spustni meni z različnimi opcijami. Poiščemo »Vivado Design Suite - HLx Editions
- 2020.1 Full Product Installation« in prenesemo okolje s klikom na »Vivado HLx 2020.1: All OS installer Single-
File Download (TAR/GZIP - 35.51 GB)«. Paziti moramo, da pomotoma ne izberemo »Vivado 2020.1 Update 1«,
ki je v spustnem meniju prva in ima velikost 10,23 GB.

Datoteka za prenos je izredno velika (35,51 GB), kar bo, ne glede na hitrost internetne povezave, vzelo precej
časa. Na spletni strani imamo tudi možnost izbire spletne namestitve (angl. »web installer«) za Linux in
Windows, ki pa že nekaj časa ne deluje pravilno, zato smo primorani prenesti celoten programski paket.

S klikom na povezavo za prenos smo preusmerjeni na spletno stran za vpis z AMD uporabniškim računom. Če
ga še nimamo, ga ustvarimo. Po vpisu z uporabniškim računom smo preusmerjeni v AMD prenosni center, kjer
moramo izpolniti obrazec z osebnimi podatki. Z klikom na gumb »Prenesi« (angl. »Download«) se prenos
datoteke začne.

Ko se prenos konča, imamo na računalniku stisnjeno datoteko velikosti 35,5 GB. Datoteke ne razširjamo ročno,
saj bi to samo povečalo potreben prostor na disku. Najlažje je odpreti datoteko s programom za razširjanje,
kot je na primer WinRAR [18]. Če uporabljamo Linux operacijski sistem, je potrebno datoteko razširiti (npr. z
ukazom »tar«).

Na dnu vsebine datoteke vidimo namestitveni program za Windows (»xsetup.exe«) oziroma za Linux
(»xsetup«), ki ga zaženemo z dvojnim klikom. WinRAR bo pred zagonom namestitvenega programa samodejno
razširil celotno datoteko, kar bo trajalo približno 5 minut.

https://www.xilinx.com/support/download.html
https://www.win-rar.com/start.html?&L=0

32

Ob zagonu namestitvenega programa nas operacijski sistem obvesti, da moramo najprej potrditi zagon
programa Xilinx, nato še zagon programa Java. Po potrditvi obeh zahtev se prikaže začetno okno. Ob tem se
pojavita dve opozorilni okni za neuspešno povezavo na internet, ki ju zapremo ali ignoriramo [Slika 31].

Izberemo »naprej« [Slika 32].

Slika 31: Namestitveni program Vivado 2020.1 - začetek

Slika 32: Začetno okno namestitvenega programa

33

Odkljukamo vsa tri soglasja in kliknemo »naprej« [Slika 33].

Pri izbiri namestitve programskega paketa izberemo »Vivado« [Slika 34].

Slika 33: Soglasja

Slika 34: Izbira programskega paketa

34

Izberemo »Vivado HL WebPACK«, ki je vključen v brezplačno spletno licenco [Slika 35].

Na naslednjem oknu odkljukamo opcije na [Slika 36]. Pri napravah izberemo samo Zynq 7000, saj Red Pitayin
FPGA čip Zynq 7010 spada v to družino. Ostale možnosti samo povečajo količino prostora na disku, ki jo
zavzema Vivado in so, razen če imamo v lasti kakšno drugo razvojno ploščo z različnim FPGA, popolnoma
neuporabne.

Slika 36: Izbira naprav in komponent programske opreme

Slika 35: Izbira različice Vivada

35

Izberemo lokacijo namestitve na disku [Slika 37].

Še enkrat preverimo vse izbrane možnosti in kliknemo »namesti« [Slika 38].

Zatem se začne postopek namestitve, ki bo trajal okrog 10 minut. Celoten proces namestitve je dokaj hiter, saj
so vse datoteke že prisotne na našem računalniku. Po zaključeni namestitvi se prikaže pojavno okno, ki nas
obvesti o uspešni namestitvi.

Slika 37: Izbira lokacije na disku

Slika 38: Povzetek namestitve

36

5.1.2 ModelSim

Na vajah bomo za simulacijo posameznih komponent v jeziku VHDL uporabili orodje ModelSim [16]. Vivado
sicer vključuje lasten simulator, vendar vsebuje tudi celoten FPGA projekt Red Pitaye, ki je prezahteven za
simulacijo. Zato bomo v ModelSim vključili le lastne komponente in jih simulirali, da se prepričamo o pravilnosti
delovanja, nato pa jih vključili v okvir celotnega projekta in generirali FPGA sliko oziroma bitstream.

ModelSim lahko dobimo tukaj. V zadnjem spustnem meniju izberemo naš operacijski sistem (Windows ali
Linux). Preverimo, da imamo izbrano različico 20.1 ali 20.1.1, saj je to zadnja različica, ki omogoča namestiti
samo ModelSim simulator s čemer se izognemo namestitvi celotnega programa Intel Quartus [Slika 39].

Slika 39: ModelSim izbira OS

V zavihku »posamezne datoteke« (»individual files«) [Slika 40] izberemo »ModelSim-Intel® FPGA Edition
(includes Starter Edition)«

Slika 40: Prenos ModelSim

Preusmerjeni smo na spletno stran z licenčno potrditvijo. Po potrditvi se program prenese.

https://www.intel.com/content/www/us/en/software-kit/660907/intel-quartus-prime-lite-edition-design-software-version-20-1-1-for-windows.html

37

Pri namestitvi smo pozorni, da izberemo različico brez licence [Slika 41].

Slika 41: Izbira različice ModelSim

5.2 Prenos FPGA projekta za Red Pitayo

V okviru vaj bomo vedno uporabljali prirejen osnovni v0.94 projekt Red Pitaye, ki ga najdemo na spletni strani
LNIV [19] v poglavju demonstracijski projekti (»tutorial projects«) [Slika 42].

Slika 42: LNIV Red Pitaya demonstracijski projekti

Kliknemo na »Red Pitaya – v0.94« s čemer odpremo novo spletno stran z navodili. V poglavju »Vivado 2020
projekt« poiščemo link s stisnjeno datoteko »redpitaya94.zip«. Prenesemo projekt in ga razširimo.

Zatem odpremo Vivado 2020.1 in se z uporabo Tcl konzole pomaknemo v razširjeni direktorij projekta. Projekt
ustvarimo z ukazom:

source ./make_project.tcl

Celoten projekt se bo avtomatsko generiral.

https://lniv.fe.uni-lj.si/redpitaya/
https://lniv.fe.uni-lj.si/redpitaya/

38

5.2.1 Splošen projekt

Za splošen Red Pitaya projekt se uporablja osnovni projekt v0.94. Najdemo ga znotraj:

• Red Pitaya FPGA GitHub skladišča za operacijske sisteme 2.00 in novejše.

• Red Pitaya GitHub skladišča za operacijske sisteme 1.04 in starejše

Če želimo narediti projekt skladen z določeno različico Red Pitayinega operacijskega sistema, potem
prenesemo točno določeno vejo skladišča kode. Povezave med operacijskimi sistemi in kodo lahko določimo
s ključem v [Tabela 1]. [3]

OS GitHub veja

2.05-37 2024.3

2.04-35 2024.2

2.00-30 2024.1

2.00-23 2023.3

2.00-18 2023.2

2.00-15 2023.1

1.04-28 2022.2

1.04-18 2022.1

Tabela 1: Povezava med Red Pitaya OS in GitHub vejami [3]

Kodo prenesemo s klikom na zeleni gumb »koda« in izbiro »prenesi zip« (»download zip«). Kodo razširimo v
poljubno mapo na računalniku.

Na Windows operacijskem sistemu zatem odpremo »Vivado« in se s TCL konzolo pomaknemo v mapo z
preneseno kodo. Nato v TCL konzoli zaženemo naslednji ukaz, ki avtomatsko odpre Vivado in generira celoten
v0.94 FPGA projekt.

make project PRJ=v0.94 MODEL=Z10

V primeru, da je na našem računalniku nameščen ukaz »make«, lahko skripto zaženemo tudi preko terminala
oziroma Ukaznega poziva.

Na Linux operacijskem sistemu se moramo prepričati, da pred zagonom ukaza zaženemo datoteko z
nastavitvami Vivada, ki se nahajaja v »/opt/Xilinx/Vivado/2020.1/settings64.sh«.

5.2.2 Ostali modeli Red Pitaya

V primeru, da imamo opravka z drugačnim modelom Red Pitaye, moramo pri zagonu ukaza podati drugačne
parametre. Več si lahko preberete tukaj.

https://github.com/RedPitaya/RedPitaya-FPGA
https://github.com/RedPitaya/RedPitaya
https://redpitaya-knowledge-base.readthedocs.io/en/latest/learn_fpga/3_vivado_env/tutorfpga2.html#make-an-fpga-project

39

5.3 Vivado in osnovni projekt v0.94

Uporabniški vmesnik Vivada [Slika 43] je sestavljen iz opravilne vrstice in serije podoken, ki skupaj predstavljajo
celoten program. Celoten uporabniški vmesnik je zelo kompleksen, zato bomo na hitro spoznali samo
najpomembnejše nastavitve.

Slika 43: Programsko okolje Vivado

40

Opravilna vrstica

V opravilni vrstici se nahajajo vse nastavitve. Iz nje lahko odpremo katerokoli okno, če ga slučajno ponesreči
zapremo. V zavihku:

• »File« lahko odpremo in zapremo celoten projekt ter dodamo nove vire.

• »Flow« omogoča odprtje blokovnega diagrama, zagon sinteze, implementacije in generacije

bitstreama.

• »Tools« omogoča generiranje novih IP blokov.

• »Window« omogoča odprtje večine podoken, ki so vidna na zaslonu.

Navigator toka (»Flow navigator«)

Navigator toka se nahaja v navpičnem oknu na skrajni levi strani. Vsebuje najpomembnejše možnosti, ki so na
voljo uporabniku, kot so zagon simulacije, implementacije, generacije bitstreama ter ponovno odprtje
blokovnega diagrama.

Viri, načrt in signali

Podokno z viri, načrt in signali [Slika 44] je sestavljeno iz treh zavihkov. Za nas je najbolj uporaben zavihek
»viri« (angl. »sources«), saj prikazuje celotno hierarhijo Verilog in VHDL komponent. V zavihku »načrt«
(»design«) pa najdemo komponente blokovnega diagrama našega projekta. Nov vir lahko vključimo s klikom
na gumb »+« v zavihku »viri«, nato pa izberemo med vključitvijo novega ali obstoječega »načrtnega vira«
(»design source«).

Slika 44: Podokno z viri, načrtom in signali

Celoten projekt Red Pitaye se na prvi pogled zdi izredno zapleten, vendar je treba upoštevati, da vključuje vse
HDL datoteke za vse možne hardverske različice Red Pitaye. Za nas je relevantno samo drevo virov, ki se nahaja
pod »red_pitaya_top«. Vse ostale vire lahko izključimo iz projekta brez kakršnihkoli posledic na končni rezultat.

41

Informacije o trenutno označenem viru

Pod oknom z viri se nahaja podokno z informacijami o trenutno označenem viru, komponenti, datoteki z
izvorno kodo, IP bloku, naslovnem prostoru ali čem drugem. Izpisane so vse informacije, ki jih ima Vivado o
posamezni komponenti, vključno z vsemi parametri, ki jih lahko spreminjamo.

Glavno okno

V glavnem oknu, ki se nahaja na skrajni desni strani lahko najdemo blokovni diagram projekta, shemo
naslovnega prostora in pa kodo trenutno odprtih datotek.

Tcl konzola, obvestila, ipd.

V podoknu na dnu uporabniškega vmesnika je več zavihkov:

- V »Tcl konzoli« lahko poganjamo »tcl« datoteke in vanjo vpisujemo ukaze. Večina ukazov je podobna

tistim v Linux terminalu.

- Pod »sporočili« (»messages«) najdemo obvestila o kodi. Tukaj nas Vivado obvešča o napakah v kodi in

ter prikaže splošna obvestila o projektu in izvedenih korakih.

- Pod »poročili« lahko po zagonu sinteze, implementacije, itd. pregledamo zasedenost posameznih virov

na FPGA čipu.

Potek programiranja

Med vajami bomo večinoma dodajali nove vire k že obstoječemu projektu, popravljali in pisali VHDL kodo, ter
po simulaciji v orodju ModelSim v Vivadu zagnali sintezo, implementacijo in na koncu še generacijo Bitstream
datoteke.

42

5.3.1 Opis projekta v0.94

Večina Red Pitayinega FPGA projekta je napisana v jezikih Verilog in System Verilog, vendar lahko v projekt
vključimo tudi komponente, napisane v jeziku VHDL. Če odpremo spustni meni virov, skrit pod
»red_pitaya_top«, vidimo 12 komponent, ki dejansko sestavljajo sistem. Celotna povezava med njimi je
opisana v komentarjih na vrhu modula »red_pitaya_top« [Slika 45], kjer je na voljo tudi kratek opis
pomembnejših komponent. [20]

Slika 45: Blokovna zgradba Red Pitaya v0.94 projekta [20]

Posamezne komponente so med seboj povezane s poenostavljeno obliko AXI vodila. AXI (»Advanced
eXtensible Interface«) [21] je komunikacijski protokol namenjen mikrokrmilnikom in spada v sklop AMBA
(»Advanced Microcontroller Bus Architecture«) protokolov [22]. AMBA je sklop različnih protokolov, ki
definirajo način komunikacije med različnimi funkcionalnimi bloki na sistemih na čipu (SoC) .

Poenostavljeno AXI vodilo je sestavljeno iz naslednjih signalov:

- clk – (»clock«) urin signal

- addr – (»address«) naslovno vodilo

- wdata – (»write data«) piši podatke

- rdata – (»read data«) beri podatki

- wen – (»write enable«) omogoči pisanje

- ren – (»read enable«) omogoči branje

- err – (»error«) napaka

- ack – (»acknowledge«) potrditev

https://developer.arm.com/documentation/102202/0300/What-is-AMBA--and-why-use-it-

43

Naslovni prostor AXI vodila Red Pitaye je v projektu v0.94 razdeljen na 8 enot, kjer ima vsaka enota 20 bitni
naslov [Tabela 2]. Začne se na heksadecimalnem naslovu 0x40000000 in konča na 0x407FFFFF. Na vsako izmed
osmih enot je povezan določen modul [20], [23], [24].

Začetni naslov Končni naslov Ime modula

0x40000000 0x400FFFFF Ostalo

0x40100000 0x401FFFFF Osciloskop

0x40200000 0x402FFFFF Generator poljubnih signalov

0x40300000 0x403FFFFF PID krmilnik

0x40400000 0x404FFFFF Mešani analogni signali

0x40500000 0x405FFFFF Veriženje

0x40600000 0x406FFFFF Prosto

0x40700000 0x407FFFFF Test napajanja

Tabela 2: Razdelitev AXI naslovnega prostora na Red Pitayi [23]

Arhitektura Red Pitaye je 32-bitna, kar pomeni, da posamezen register zaseda 32-bitov (4 bajte). Podrobnejšo
razdelitev naslovnega prostora AXI vodila najdete tukaj.

Ostalo

Modul ostalo (»housekeeping«), ki je znotraj projekta v0.94 poimenovan »red_pitaya_hk« oziroma »i_hk«,
skrbi za identifikacijsko številko sistema (ID), hkrati pa ima nadzor nad osmimi LED diodami in šestnajstimi
digitalnimi vhodi in izhodi.

Osciloskop

Modul osciloskop, poimenovan »red_pitaya_scope« oziroma »i_scope«, je namenjen zajemanju podatkov v
dva medpomnilnika realizirana v BRAM, po eden za vsak vhodni kanal. Med vhodnim signalom in
medpomnilnikom sta prisotna še dva modula. Prvi je digitalni filter, ki poskrbi za pravilno frekvenčno
kalibracijo signala, drugi modul pa lahko povpreči in decimira vhodni signal [Slika 46].

Slika 46: Blokovna zgradba osciloskopa [24]

Zajem signala se prične, ko je izpolnjen pogoj za sprožitev (»trigger«).

Generator poljubnih signalov

Generator poljubnih signalov (angl. »Arbitrary signal/waveform generator«) se nahaja na naslovu omogoča
generacijo poljubnih signalov definiranih s strani uporabnika. V FPGA je predstavljen z modulom
»red_pitaya_asg« oziroma »i_asg« [Slika 47]. Signal se generira iz medpomnilnika fiksne dolžine. Pri čemer je
skok bralnega kazalnika odvisen od podane frekvence. Vsebina medpomnilnika je generirana softversko, ali

https://redpitaya.readthedocs.io/en/latest/developerGuide/software/build/fpga/fpga.html#registers

44

kot ena izmed vnaprej izbranih oblik ali pa podana s strani uporabnika. Signal iz medpomnilnika je pred
izhodom še skaliran preko linearne funkcije določene s kalibracijo.

Slika 47: Blokovna zgradba generatorja poljubnih signalov [24]

PID krmilnik

PID krmilnik (»Proportional-Integral-Derivative controller«) je v FPGA predstavljen z modulom
»red_pitaya_pid« oziroma »i_pid« [Slika 48]. Celoten modul PID je sestavljen iz štirih PID blokov. Vsaka linija
podatkov iz ADC-ja, ki predstavlja enega izmed hitrih analognih vhodov (CHA in CHB oziroma IN1 in IN2), se
razcepi na dva dela. Vsak izmed delov gre skozi svoj PID blok in se nato sešteje z izhodom iz PID bloka drugega
kanala in poda na hitri analogni izhod. [24]

Slika 48: Blokovna zgradba PID krmilnika [24]

S tem lahko enostavno dosežemo, da hitri analogni vhod postane funkcija obeh analognih vhodov, kar je zelo
pomembno pri nadzorovanju različnih sistemov (npr. za stabilizacijo laserjev).

Vsak PID blok je zgrajen iz proporcionalnega, integrirnega in odvajalnega dela. Vhodni signal v PID blok se
odšteje od »nastavljene točke«. Razlika predstavlja napako in se poda na vhod P, I, in D delov, nakar se izhodi
vseh treh delov seštejejo in podajo na izhod [Slika 49].

45

Slika 49: Blokovna zgradba PID bloka [24]

Integrirni del je mogoče resetirati s posebnim signalom.

Mešani analogni signali

Angl. »analog mixed signals«, predstavljajo »počasne« analogne vhode in izhode na razširitvenem konektorju
E2. V FPGA so predstavljeni z modulom »red_pitaya_ams« oziroma »i_ams« [Slika 50].

Na Red Pitayi so štirje počasni analogni vhodi in štirje počasni analogni izhodi. Počasni analogni vhodi (AIN0,
AIN1, AIN2 in AIN3) so povezani na 12-bitni ADC, ki hkrati meri tudi notranje napetosti na Red Pitayi
(pomembne za stabilnost sistema). Napetostno območje teh vhodov je med 0 in 3,5 V. Izmerjene vrednosti se
shranijo v FPGA registre. Preko registrov pa lahko nastavimo vrednosti analognih izhodov, z izhodnim
napetostnim območjem med 0 in 1,8 V. [5], [24]

Slika 50: Blokovna zgradba mešanih analognih signalov [24]

Veriženje

Modul za veriženje (»daisy chaining«) je namenjen povezavi in sinhronizaciji večih Red Pitay preko urinega
signala glavne oziroma primarne enote. V FPGA je predstavljeni z modulom »red_pitaya_daisy« oziroma
»i_daisy«. V verigi primarna enota deli svoj urin in prožilni signal vsem sekundarnim enotam, kar omogoča
sinhrono generacijo in zajemanje podatkov [Slika 51].

Slika 51: Blokovna zgradba modula za veriženje [24]

Poleg deljenja urinega in prožilnega signala, modul omogoča tudi hitro komunikacijo in pošiljanje podatkov
med posameznimi enotami.

46

Prosta vodila

Kot smo omenili na začetku poglavja »Opis projekta v0.94« je naslovno vodilo v v0.94 projektu razdeljeno na
8 naslovnih prostorov. Od tega jih je 6 zasedenih z zgoraj naštetimi komponentami, dve pa sta prosti in
povezani na vodilni štrcelj/končnik (»system stub«). Vodilni štrcelj poskrbi, da pri branju prostih, oziroma
nepovezanih, naslovov ne pride do sistemske napake. [20]

Sistemski povezovalnik

Sistemski povezovalnik (angl. »system bus interconnect«), ki je v FPGA predstavljen z modulom
»system_bus_interconnect«, poskrbi za razdelitev naslovnega vodila/prostora na več manjših. V projektu
v0.94 razdeli naslovni prostor na osem različnih delov, kjer ima vsak del 20-bitni naslov. [20]

Procesni sistem

Procesni sistem se nahaja v modulu »red_pitaya_ps« oziroma »ps« in predstavlja dvojedrni ARM procesor, ki
skupaj z FPGA vezjem sestavlja Zynq 7010 čip [Slika 52]. Procesni sistem je odvisen od zunanje ure in reseta,
komunicira pa z DDR spominom, analognimi in digitalnimi konektorji na razširitvenih konektorjih E1 in E2,
serijsko konzolo na mikro USB konektorju poleg napajanja, ter AXI vodilom. Znotraj modula je poseben AXI
blok, ki poenostavi AXI vodilo, da je prijaznejše uporabniku, in ga poveže na sistemsko vodilo. [20]

Slika 52: Blokovna zgradba procesnega sistema [20]

47

5.4 Dodatek lastne komponente v sistem

Če želimo v sistem dodati lastno komponento, kateri želimo spreminjati parametre (oziroma jo upravljati z C
programom), jo moramo povezati na sistemsko vodilo. Projekt v0.94 ima sistemsko vodilo razdeljeno na 8
razdelkov. Načeloma bi lahko priključili našo komponento na eno izmed prostih razdelkov, vendar bomo iz
praktičnih razlogov raje odklopili eno izmed obstoječih komponent in na njeno mesto povezali našo
komponento. Odklopili bomo komponento »PID« in na njeno mesto priključili komponento »red_pitaya_proc«
(oziroma »i_proc«) s katero bomo lahko nadzorovali LED, digitalne priključke, ter hitre analogne vhode in
izhode. Primer je povzet po nalogah iz LNIV [19] in Red Pitayine spletne strani [25].

Povezavo nove komponente moramo narediti na dveh nivojih. Najprej moramo odstraniti »red_pitaya_pid«
komponento iz vrhnjega modula in na njeno mesto priključiti »red_pitaya_proc«. Nato moramo v projekt
dodati nov vir, ki vsebuje podatke o naši komponenti in njeni funkcionalnosti.

5.4.1 Spremembe vrhnje komponente

Izključitev že obstoječe komponente je izredno preprosta, saj moramo iz vrhnje komponente, v našem primeru
»red_pitaya_top«, le odstraniti kodo, ki povezuje obstoječo komponento in vrhnjo komponento. Kodo
kompnente PID bomo zakomentirali, saj lahko pride prav v prihodnosti.

V »red_pitaya_top« poiščemo »red_pitaya_pid« komponento. Nahaja se pod komentarjem »MIMO PID
controller« med vrsticami 526 in 548 [Slika 53].

Slika 53: Priključitev MIMO PID komponente na vrhnjo komponento [20]

Pri podrobnem ogledu signalov, ki so povezani na »red_pitaya_pid«, že lahko sklepamo katere signale bomo
potrebovali:

- Sistemsko vodilo, sestavljeno iz naslovnega vodila, urinega signala, ter reseta

- Povezave do hitrih analognih vhodov in izhodov

- Povezave do LED

- Povezave do digitalnih priključkov

Sedaj lahko komentiramo kodo PID komponente.

48

Zaradi preglednosti bomo priključitev komponente dodali povsem na konec »red_pitaya_top«. Za začetek
lahko kar kopiramo povezavo PID komponente in jo prilepimo na konec »red_pitaya_top«.

LED in digitalni konektorji so priključeni na modul »red_pitaya_hk«, zato jih moramo najprej od tam odklopiti
[Slika 54], [20].

Slika 54: GPIO povezave [20]

GPIO signali so povezani na digitalne priključke na razširitvenem konektorju E1 [5]. Signali iz konektorja so
povezani na vhodno-izhodni medpomnilnik, s katerim lahko določimo smer posameznih priključkov (torej
izberemo ali se obnašajo kot vhod ali izhod). Medpomnilnik razdeli vhodno-izhodni signal »exp_io« (sestavljen
iz »exp_n_io« in »exp_p_io«, kjer vsak predstavlja eno vrsto osmih digitalnih priključkov) na vhodni signal
»exp_in«, izhodni signal »exp_out«, ter kontrolni smerni signal »exp_dtr« [Slika 55], [20]. Logike ne bomo
spreminjali, zato bomo v lastno komponento vključili dodatne signale potrebne za kontolo vhodno-izhodne
logike.

Slika 55: Povezava komponente z ostalimi signali [20]

49

V »red_pitaya_hk« komentiramo naslednje signale:
- led_o
- exp_p_dat_i
- exp_p_dat_o
- exp_p_dir_o
- exp_n_dat_i
- exp_n_dat_o
- exp_n_dir_o

in jih prenesemo v povezave naše nove komponente [Slika 56]:

Slika 56: »red_pitaya_proc« po dodatku novih signalov

Ostanejo le še povezave na hitre analogne vhode in izhode. Zaradi kompatibilnosti z ostalimi projekti na LNIV
spletni strani, bomo dodali še možnost digitalne povratne povezave. Naslednji dve vrstici dodamo pred
povezavo »red_pitaya_proc«:

assign proc_i[0] = digital_loop ? asg_dat[0] : {adc_dat_raw[0][14-1], ~adc_dat_raw[0][14-2:0]};
assign proc_i[1] = digital_loop ? asg_dat[1] : {adc_dat_raw[1][14-1], ~adc_dat_raw[1][14-2:0]};

Dodamo vodili za signalni generator in zajem podatkov »proc_i« in »proc_o« v vrstico 184:

// PID > proc
SBA_T [2-1:0] proc_i;
SBG_T [2-1:0] proc_o;

50

Na koncu preoblikujemo še ostale signal, ki uporabljajo PID signale. V razdelku DAC IO, ki se nahaja med
vrsticama 380 in 390 [Slika 57], spremenimo signala:

Slika 57: Sprememba ostalih PID signalov

Komponenti »proc_i« dodamo še statičen parameter, s katerim lahko na drugih modelih Red Pitaye po potrebi
spremenimo število GPIO priključkov. Na koncu celotna povezava v »red_pitaya_top« izgleda tako [Slika 58]:

Slika 58: Končna povezava nove komponente

Ne smemo pozabiti, da smo s prevezavo digitalnih vhodov in izhodov, ter LED diod iz »red_pitaya_hk«
onemogočili njihovo nadzorovanje preko C API ukazov [3]. Sedaj moramo narediti nove registre, ki nam bodo
omogočali nadzor nad njimi.

51

5.4.2 Zasnova nove komponente

Komponento »red_pitaya_proc« bomo zaradi skladnosti z ostalimi vajami napisali v VHDL jeziku. Kombiniranje
hardversko-opisnih jezikov VHDL in Verilog je mogoče zaradi njihove modularnosti. Vsak modul se obnaša kot
črna škatla z vhodnimi in izhodnimi signali, zato pri priključitvi ni pomembno kaj se nahaja znotraj samega
modula.

Nov modul dodamo s klikom na »+« v zavihku »viri« [Slika 59]:

Slika 59: Dodatek nove komponente

Izberemo možnost dodatka načrtovalskega vira (druga možnost). V naslednjem oknu izberemo »ustvari novo
datoteko«. Za tip datoteke izberemo »VHDL« in nov modul poimenujemo »red_pitaya_proc«. Lokacijo lahko
pustimo lokalno glede na projekt [Slika 60].

Slika 60: Poimenovanje nove komponente

Nato kliknemo »zaključi«.

52

Odpre se okno za določitev vhodno-izhodnih signalov modula. Ker bomo vse signale določili ročno, kliknemo
naprej in potrdimo našo odločitev [Slika 61].

Slika 61: Določitev vhodno-izhodnih signalov

V nov modul skopirajmo spodnjo kodo.

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;

entity red_pitaya_proc is
 generic(
 DW : integer := 8
);
 port (
 clk_i : in std_logic; -- bus clock
 rstn_i : in std_logic; -- bus reset - active low
 dat_a_i, dat_b_i : in std_logic_vector(13 downto 0); -- input
 dat_a_o, dat_b_o : out std_logic_vector(13 downto 0); -- output

 led_o : out std_logic_vector(7 downto 0); -- LED output
 gpio_p_i, gpio_n_i : in std_logic_vector(DW-1 downto 0); -- GPIO input data
 gpio_p_o, gpio_n_o : out std_logic_vector(DW-1 downto 0); -- GPIO output data
 gpio_p_dir, gpio_n_dir : out std_logic_vector(DW-1 downto 0); -- GPIO direction

 sys_addr : in std_logic_vector(31 downto 0); -- bus address
 sys_wdata : in std_logic_vector(31 downto 0); -- bus write data
 sys_wen : in std_logic; -- bus write enable
 sys_ren : in std_logic; -- bus read enable
 sys_rdata : out std_logic_vector(31 downto 0); -- bus read data
 sys_err : out std_logic; -- bus error indicator
 sys_ack : out std_logic -- bus acknowledge signal
);
end red_pitaya_proc;

architecture Behavioral of red_pitaya_proc is

 constant ZERO : std_logic_vector(32-1 downto 0) := (others => '0');

 signal diop_in, dion_in : std_logic_vector(DW-1 downto 0);
 signal diop_out, dion_out : std_logic_vector(DW-1 downto 0) := (others => '0'); -- output 0
 signal diop_dir, dion_dir : std_logic_vector(DW-1 downto 0) := (others => '0'); -- direction in=0, out=1

53

 signal led : std_logic_vector(7 downto 0) := (others => '0');

 signal a, b: std_logic_vector(7 downto 0); -- amplitude registers
 signal mul_a, mul_b: signed(22 downto 0);

begin

 -- multiply signed inputs with 8-bit register, register values are unsigned
 mul_a <= signed(dat_a_i) * signed('0' & a);

 -- divide by 16 (multiplication format 4.4), possible output overflow
 dat_a_o <= std_logic_vector(mul_a(17 downto 4));

 pbus: process(clk_i)
 begin
 if rising_edge(clk_i) then
 if rstn_i = '0' then
 diop_dir <= (others => '0');
 dion_dir <= (others => '0');
 diop_out <= (others => '0');
 dion_out <= (others => '0');
 led <= (others => '0');

 a <= x"10";
 else
 sys_ack <= sys_wen or sys_ren; -- acknowledge transactions

 if sys_wen='1' then -- decode address & write registers
 if sys_addr(19 downto 0)=X"00010" then
 diop_dir <= sys_wdata(DW-1 downto 0); -- Change direction P
 elsif sys_addr(19 downto 0)=X"00014" then
 dion_dir <= sys_wdata(DW-1 downto 0); -- Change direction N
 elsif sys_addr(19 downto 0)=X"00018" then
 diop_out <= sys_wdata(DW-1 downto 0); -- Change output P
 elsif sys_addr(19 downto 0)=X"0001C" then
 dion_out <= sys_wdata(DW-1 downto 0); -- Change output N
 elsif sys_addr(19 downto 0)=X"00030" then
 led <= sys_wdata(7 downto 0); -- Change LEDs
 elsif sys_addr(19 downto 0)=X"00054" then
 a <= sys_wdata(7 downto 0); -- 8-bit amplitude
 end if;
 end if;
 end if;
 end if;
 end process pbus;

 -- Handling errors
 sys_err <= '0';

 -- Direct connections
 gpio_p_dir <= diop_dir;
 gpio_n_dir <= dion_dir;
 gpio_p_o <= diop_out;
 gpio_n_o <= dion_out;
 diop_in <= gpio_p_i;
 dion_in <= gpio_n_i;
 led_o <= led;

 -- Decode address & read data
 with sys_addr(19 downto 0) select
 sys_rdata <= X"FE240000" when x"00050", -- ID
 ZERO(32-1 downto DW) & diop_dir when x"00010", -- GPIO P direction
 ZERO(32-1 downto DW) & dion_dir when x"00014", -- GPIO N direction
 ZERO(32-1 downto DW) & diop_out when x"00018", -- GPIO P output
 ZERO(32-1 downto DW) & diop_out when x"0001C", -- GPIO N output
 ZERO(32-1 downto DW) & diop_in when x"00020", -- GPIO P inputs
 ZERO(32-1 downto DW) & dion_in when x"00024", -- GPIO N inputs
 ZERO(32-1 downto 8) & led when x"00030", -- LEDs
 ZERO(32-1 downto 8) & a when x"00054", -- Amplitude
 ZERO when others;

end Behavioral;

54

Koda novega modula je izredno preprosta. Omogoča interakcijo z LED in digitalnimi vhodi in izhodi preko
pisanja in branja registrov. Poleg tega pa skalira signal iz hitrega analognega vhoda 1 (IN1) z vrednostjo 8-bitne
amplitude »a«, ter rezultat pošlje na izhod 1 (OUT1). Koda prikazuje tudi osnovni koncept branja in pisanja v
registre preko naslovov določenih v VHDL kodi. Naslovno vodilo Red Pitaya ima 32 bitov. Zgornjih 12 je
določenih z razdelkom, kamor je priključena komponenta. Ker smo nadomestili komponento PID je prvi
veljavni naslov komponente »red_pitaya_proc« 0x40300000. Spodnjih 20 bitov naslovnega prostora pa lahko
prosto razdelimo med registre znotraj kode same komponente. Tako lahko na primer z branjem naslova
0x40300050 (torej osnova »0x40300000« plus »0x50« zamika) preberemo ID naše komponente in se
prepričamo, da je FPGA pravilno konfiguriran.

Po shranitvi, se bo »red_pitaya_proc« avtomatsko vključil v projekt, saj smo povezavo na vrhnjo komponento
naredili vnaprej [Slika 62].

Slika 62: Spremembe v hierarhiji po dodatku nove komponente

Zaradi preglednosti so vsi nepotrebni moduli izključeni iz projekta. Vidimo lahko, da je modul
»red_pitaya_proc« nadomestil modul »red_pitaya_pid«, saj je ta izključen iz spostnega menija vrhnje
komponente »red_pitaya_top«. V primeru, da je komponenta »red_pitaya_proc« vključena v projekt, vendar
se znotraj glavne hierarhije nahaja datoteka z vprašajem, moramo preveriti, če se ime entitete na nivoju
»red_pitaya_top« ujema z imenom entitete v »red_pitaya_proc«.

55

5.4.3 Generacija bitstream datoteke

Sedaj, ko smo modificirali osnovni v0.94 projekt, je čas, da generiramo bitstream datoteko in reprogramiramo
FPGA na Red Pitayi.

Slika 63: Generacija bitstreama

Konfiguracijsko datoteko oziroma bitstream generiramo z zaporednim zagonom sinteze, implementacije in
generacije bitstreama, v naštetem vrstnem redu [Slika 63].

Med sintezo Vivado avtomatsko optimizira kodo, jo pretvori v dostopne FPGA komponente in določi povezave
med njimi. Korak sinteze je zelo podoben izrisu shematike pri načrtovanju tiskanih vezij. Vivado preveri tudi
vse pravila in javi morebitne napake v kodi ali povezavah.

Med implementacijo se sintetizirane povezave implementirajo na samem FPGA, podobno kot pri povezovanju
komponent na tiskanini na podlagi sheme znotraj programa kot je npr. Altium ali KiCad.

V koraku generacije bitstreama se implementacija pretvori v binarna navodila za reprogramiranje FPGA vezja.

Za uspešno generacijo morajo biti vsi trije koraki izvedeni uspešno, brez večjih napak. O vseh odkritih napakah
in obvestilih smo obveščeni preko zavihka »sporočila« v spodnjem podoknu programa.

Generirano bitstream datoteko najdemo v mapi »RedPitaya-FPGA\prj\v0.94\project\redpitaya.runs\impl_1«
kot »red_pitaya_top.bit«.

56

5.5 Reprogramiranje FPGA na Red Pitayi

Reprogramiranje FPGA vezja na Red Pitayi je dokaj enostavno in ga lahko izvedemo tekom delovanja naprave.
Najprej prenesemo bitstream datoteko na Red Pitayo in nato zaženemo ukaz za reprogramiranje. FPGA
ohranja trenutno sliko do ponovnega reprogramiranja, ki se zgodi:

• Ob ponovnem zagonu naprave.

• Ob zagonu katerekoli aplikacije.

• Ob ročnemu reprogramiranju FPGA vezja.

V primeru, da želimo spremeniti FPGA sliko, ki se naloži ob zagonu določene aplikacije, oziroma reprogramirati
FPGA na novejšem operacijskem sistemu, moramo izvesti še nekaj dodatnih korakov.

5.5.1 Prenos bitstreama na Red Pitayo

Ko v Vivadu uspešno ustvarimo bitstream oziroma ».bit« datoteko, jo najprej prenesemo na Red Pitayo.
Datoteko najdemo v mapi »RedPitaya-FPGA\prj\v0.94\project\redpitaya.runs\impl_1«. Poimenovana je
»red_pitaya_top.bit«. Pot do datoteke se lahko razlikuje glede na uporabljen projekt oziroma kombinacijo
zastavic, s katerimi smo ustvarili projekt. Če uporabljamo drugačen model Red Pitaya, moramo na primer
odpreti direktorij »v0.94_250« namesto »v0.94«. Preostala pot ostane nespremenjena. [26]

Datoteko lahko kopiramo na Red Pitayo s pomočjo programa kot je npr. »Bitvise SSH Client« [10] ali pa
uporabimo Terminal oziroma Ukazni poziv.

Slika 64: Program Bitvise SSH Client [10]

V programu »Bitvise SSH Client« [Slika 64] vpišemo podatke za server. V polje »host« vpišemo Red Pitayin IP
naslov (lahko pa uporabimo lokalni ».local« nasloa), v polje »port« vpišemo 22, nato pa pod »avtorizacijo«
izpolnimo »uporabniško ime« root, ter »geslo« root. Zatem kliknemo »Vpiši se«.

57

V levostranskem meniju se, po uspešni povezavi, pojavijo nove možnosti. Izberemo »novo SFTP okno« [Slika
65].

Slika 65: Novo SFTP okno

Na desni strani okna se nahaja datotečni sistem Red Pitaye, odprt v domači mapi »root«, na levi strani pa
datotečni sistem našega računalnika. Na levi strani se navigiramo do mapo z ».bit« datoteko in jo prenesemo
na Red Pitayo. Datoteke med datotečnima sistemoma prenašamo s povlekom iz ene na drugo stran.

Sicer pa lahko uporabimo Ukazni poziv in prenos datoteke izvedemo z ukazom »scp« (»secure copy«):

scp -r »/pot/do/red_pitaya_top.bit« »root@<IP Red Pitaye>:/root«

5.5.2 Reprogramiranje FPGA

Zatem se na Red Pitayo povežemo z SSH povezavo; Ali s klikom na »novo terminalno okno« (»new terminal
console«) [Slika 66],

Slika 66: Novo terminalno okno

58

ali pa z ukazom:

ssh root@<IP Red Pitaye>

in vpisom gesla »root«.

FPGA konfiguracijo zamenjamo z ukazom:

cat red_pitaya_top.bit > /dev/xdevcfg

Na koncu preverimo identifikacijsko številko FPGA slike, ki smo jo določili znotraj VHDL kode:

monitor 0x40300050

Če so bili vsi koraki izvedeni pravilno, Red Pitaya izpiše 0xfe240000.

5.5.3 Menjava FPGA slike aplikacij

Pri izvedbi vaj bomo spremenili FPGA konfiguracijo, ki se naloži ob zagonu posamezne aplikacije. Za menjavo
potrebujemo bash program »nastavi.sh«, katerega najdemo med datotekami za vaje:

#!/bin/bash
if [$# -eq 0]
then
conf="/opt/redpitaya/fpga/fpga_0.94.bit"
else
conf=$(realpath $1)
#echo "test1/2" > file.conf
fi

mount -o rw,remount $PATH_REDPITAYA
echo $conf > /opt/redpitaya/www/apps/la_pro/fpga.conf
mount -o ro,remount $PATH_REDPITAYA
echo "set to "$conf

Program »nastavi.sh« konfigurira datoteko »fpga.conf«, ki se nahaja v mapi vsake izmed aplikacij in vsebuje
pot do bistream datoteke, ki se naloži ob zagonu aplikacije. Vsebino »fpga.conf« zamenjamo s potjo do našega
»bitstreama«. V primeru, da ne podamo poti do datoteke, se »fpga.conf« ponastavi v originalno različico.

Datoteko »nastavi.sh« najprej kopiramo na Red Pitayo in omogočimo njen zagon z ukazom:

chmod +x nastavi.sh

Ob zagonu programa podamo pot do bitstream datoteke:

./nastavi.sh red_pitaya_top.bit

59

5.5.4 Reprogramiranje na OS 2.00

Pri uporabi različice Red Pitaya operacijskega sistema 2.00 ali višje, se postopek spremembe FPGA spremeni.
Pred pošiljanjem bitstream datoteke na Red Pitayo moramo izvesti dodaten korak, kjer spremenimo obliko
datoteke. Za reprogramiranje pa uporabimo drugačen ukaz [26].

1. Odpremo Vivado 2020.1 in se preko »Tcl konzole« premaknemo v direktorij z bitstream datoteko.

Izvedemo naslednja ukaza:

echo all:{ red_pitaya_top.bit } > red_pitaya_top.bif

bootgen -image red_pitaya_top.bif -arch zynq -process_bitstream bin -o
red_pitaya_top.bit.bin -w

Prvi ukaz ustvari datoteko s potjo do naše bitstream datoteke, nato pa drugi ukaz pretvori datoteko v binarno
obliko s pomočjo orodja »bootgen«.

2. Datoteko »red_pitaya_top.bit.bin« kopiramo na Red Pitayo

3. Znotraj Red Pitayinega Linux terminala poženemo ukaz

fpgautil -b red_pitaya_top.bit.bin

Menjava FPGA aplikacij na OS 2.00

Za menjavo zagonske FPGA konfiguracija, ki se naloži ob zagonu Red Pitaye oziroma posamezne aplikacije na
OS 2.00, potrebujemo skripto »nastavi2.sh«. Program zamenja originalno »fpga.bit.bin« datoteko, ki se nahaja
v mapi »/opt/redpitaya/fpga/z10_125/v0.94« z podano bitstream datoteko. Hkrati pa poskrbi, da se originalna
konfiguracija »fpga.bit.bin« ohrani.

#!/bin/bash
BITSTREAM=$1
MODEL=$(/opt/redpitaya/bin/monitor -f)
PROJ=v0.94

mount -o rw,remount $PATH_REDPITAYA
cp -n "/opt/redpitaya/fpga/$MODEL/$PROJ/fpga.bit.bin" "/opt/redpitaya/fpga/$MODEL/$PROJ
/fpga_orig.bit.bin"

if [$# -eq 0]
then
cp -f "/opt/redpitaya/fpga/$MODEL/$PROJ/fpga_orig.bit.bin" "/opt/redpitaya/fpga/$MODEL
/$PROJ/fpga.bit.bin"
conf="Restored original fpga.bit.bin"
else
cp -f "$(realpath $1)" "/opt/redpitaya/fpga/$MODEL/$PROJ/fpga.bit.bin"
conf="fpga.bit.bin overwritten with $BITSTREAM"
fi

mount -o ro,remount $PATH_REDPITAYA
echo "$conf"

60

S spremembo »fpga.bit.bin« ne spremenimo samo bitstream datoteke za določeno aplikacijo, ampak
zamenjamo FPGA konfiguracijo vseh aplikacij, ki za svoje delovanje uporabljajo projekt »v0.94«. Prav tako
spremenimo Red Pitayino zagonsko FPGA konfiguracijo.

5.6 Razlike v postopku za druge modele Red Pitaye

V primeru, da želimo ustvariti FPGA projekt za drugo različico Red Pitaye, so vsi postopki pri reprogramiranju
FPGA in kreaciji splošnega Red Pitaya projekta popolnoma enaki. Spremenijo se le uporabljene zastavice pri
kreaciji projekta [4], [Tabela 3]:

Model MODEL zastavica

STEMlab 125-10

STEMlab 125-14

Z10

STEMlab 125-14 Z7020 Z20_14

SDRlab 122-16 Z20

SIGNALlab 250-12 Z20_250

STEMlab 125-14 4-input Z20_4

Tabela 3: MODEL zastavice pri kreaciji Red Pitaya FPGA projekta [4]

V primeru uporabe modela SIGNALlab 250-12, se spremeni tudi zastavica PRJ in sicer v v0.94_250.

Projekti različnih modelov Red Pitaye so na prvi pogled popolnoma enaki, vendar uporabljajo različne čipe
(FPGA, ADC, …), ki spremenijo velikosti in število posameznih priključkov. Zato projekti med seboj niso
kompatibilni in ne delujejo na drugih modelih Red Pitaye (npr., pri uporabi STEMlab 125-14 4-input nimamo
dostopa do hitrih analognih izhodov).

Nasveti v primeru težav

Tukaj je nekaj uporabnih nasvetov za reševanje težav z projektom.

• Pred generacijo bitstreama je potrebno vse novo ustvarjene komponente simulirati. S tem se

prepričam, da vse datoteke delujejo pravilno in hkrati hitro odpravimo morebitne napake. Generacija

bitstreama, kopiranje datotek na Red Pitayo in testiranje je zelo zamuden način za odkritje in odpravo

napak.

• Napake se lahko pojavijo na različnih mestih. Na primer, v kodi komponente, pri povezavi posameznih

komponent, uporaba napačnega projekta, … . S simulacijo lahko hitro odkrijemo prisotnost napak v

posameznih komponentah in zožimo področje iskanja.

• Pri generaciji projekta moramo paziti, da uporabimo pravilne zastavice za našo verzijo Red Pitaye, saj

v nasprotnem primeru »bitstream« na razvojni plošči ne bo deloval, čeprav celotna simulacija deluje

pravilno. Red Pitaya v takšnem primeru javi napako zaradi napačnih vhodno-izhodnih priključkov:

 sh: 1: echo: echo: I/O error
 BIN FILE loading through FPGA manager failed

• Pri konfiguriranju datotek v Linux operacijskem sistemu moramo biti izredno previdni, da ponesreči ne

izbrišemo kakšne pomembne datoteke, saj imamo popolen nadzor nad celotnim sistemom.

• V najslabšem primeru lahko vedno izbrišemo in ponovno naložimo celoten operacijski sistem, kar

odpravi vse programske napake.

61

6 Aplikacije v jeziku C in Python

V tem poglavju si bomo pogledali kako lahko napišemo in zaženemo C in Python aplikacije znotraj Red
Pitayinega Linux operacijskega sistema.

Preden začnemo s samim programiranjem potrebujemo naslednje:

- Urejevalnik kode z ustreznimi razširitvami za lažje programiranje v Python oziroma C kodi (priporočam

Visual Studio Code [27])

- Ustrezno različico Python prevajalnika [28]

6.1 Programiranje v C kodi

Za pisanje programov v C kodi ne potrebujemo nobenih dodatnih orodij, saj lahko programe prevajamo
neposredno na Red Pitayi. Kodo sicer lahko s pomočjo ustreznih razširitev razhroščujemo in testiramo v
urejevalnikna na samem računalniku, ki pa se lahko izkaže kot precej težavno v primeru komunikacije z FPGA
registri ali uporabo funkcij iz Red Pitayinih knjižnic. Celoten postopek lahko razbijemo na naslednje korake:

- Pisanje C programa.

- Kopiranje programa na Red Pitayo.

- Zagon programa na Red Pitayi.

Za komuniciranje z Red Pitayo bomo uporabili SSH povezavo [7].

Ne bomo se spuščali v splošna pravila za pisanje C kode. Če potrebujete pomoč, je Google vaš najboljši prijatelj.
Veliko uporabnih nasvetov pa boste našli na spletni strani stackoverflow. Uporabite znanje, ki ste ga pridobili
pri drugih predmetih oziroma z lastnim trudom. Vsa C koda na vajah je dokaj enostavna.

V tej sekciji se bomo posvetili začetnemu osnutku kode iz vaj ter splošnim navodilom za komunikacijo z
različnimi perifernimi enotami Red Pitaye.

https://code.visualstudio.com/
https://www.python.org/
https://redpitaya.readthedocs.io/en/latest/developerGuide/software/console/ssh/ssh.html#establish-remote-ssh-connection
https://stackoverflow.com/

62

6.1.1 Opis delovanja osnutka C kode

Osnutek C programske kode za vaje je namenjen prikazu izmenjave podatkov med FPGA registri in C
programom. Pri načrtovanju FPGA kode je izredno pomembno, da si zabeležimo na katerih naslovih se
nahajajo parametri (na primer, nastavitev amplitude, vpis koeficientov, ID, itd.), saj nam to močno olajša
pisanje C programa.

Po vključitvi knjižnic, a pred glavno zanko, se nahajajo tri
funkcije [Slika 67]:

• Out32

• In32

• In16

Z njimi lahko beremo in pišemo podatke na naslove FPGA
registrov. Vsi FPGA registri, ki vsebujejo s strani uporabnika
nastavljive parametre, so povezani s procesorskim vodilom,
zato jih lahko naslovimo z vpisom pravilnega naslova.

• Funkcija Out32 sprejme kazalec na naslovni prostor »adr«, naslovni zamik »offset«, in vrednost

»value«. Funkcija sešteje osnovni naslov in zamik in ju spremeni v nepredznačeni 32-bitni kazalec,

kamor se zapiše podana vrednost.

• In32 deluje v obratni smeri kot Out32 in vrne vrednost registra na podanem naslovu.

• Funkcija In16, deluje enako kot In32, le da prebrano vrednost pretvori v 16-bitna predznačeno število.

Slika 68: Začetni del glavne funkcije

Celoten program je namenjen komunikaciji in nastavljanju parametrov v modificiranem FPGA vezju [Slika 68].
Za začetek moramo ugotoviti začetni naslov komponente »red_pitaya_proc«, ki smo jo ustvarili v poglavju
»Dodatek lastne komponente v sistem«.Ker smo v osnovnem projektu nadomestili PID krmilnik, je začetni
naslov 0x40300000. Mapa registrov osnovnega projekta v0.94 je dostopna tukaj (med načrti registrov ne
vidimo načrta za operacijski sistem 1.04-28, zato uporabimo najstarejšo možno različico načrtov 2.00-15) [4].

Po definiranju spremenljivk odpremo Red Pitayin spomin v načinu za branje in pisanje. Registri se nahajajo v
direktoriju »/dev/mem«. Zatem izrišemo spominski načrt z ukazom »mmap«. Registre bi lahko spreminjali tudi

Slika 67: Funkcije za komunikacijo z FPGA registri

https://redpitaya.readthedocs.io/en/latest/developerGuide/software/build/fpga/regset/2.00-15/v0.94.html#project-v0-94

63

ročno z ukazom »monitor«, ki je na voljo znotraj Linux terminala, vendar je rešitev preko C programa
enostavnejša in bolj uporabna.

Kot primer imamo podano branje identifikacijskega registra znotraj modificirane FPGA slike s pomočjo funkcije
In32.

Zatem sledi prostor namenjen kodi za komunikacijo in nastavitve FPGA vezja.

Povsem na koncu najdemo še sledečo vrstico, ki zapre oziroma sprosti registrski načrt [Slika 69].

Slika 69: Zaključek programa

6.1.2 Programske knjižnice na Red Pitayi

C

Red Pitaya že vključuje različne C programske knjižnice, ki omogočajo nadzor nad vsemi perifernimi enotami.
Med vajami jih ne bomo uporabljali, saj je cilj predmeta modifikacija in komunikacija z FPGA.

Med njimi sta najbolj uporabni:

• rp – vsebuje večino funkcij za nadzor nad digitalnimi vhodi in izhodi, LED, ter hitrimi analognimi vhodi

in izhodi.

• rp_hw – nadzor nad funkcijami za digitalno komunikacijo.

Vključimo jih tako kot vsako drugo C knjižnico, edina razlika je, da delujejo le znotraj operacijskega sistema na
Red Pitayi.

Vse C knjižnice in vključene funkcije lahko najdemo v razdelku rp-api na Red Pitaya GitHubu. Pazimo le, da
gledamo pravo vejo GitHub kode (za 1.04-28 izberemo vejo »release-2022.2«) [29].

Opise posameznih funkcij lahko najdemo v ».h« datotekah na GitHub repozitoriju [29] in pa v seznamu ukazov
(orientiramo se po stolpcu »ekosistem«) [30], kjer najdemo tudi tabelo kompatibilnosti operacijskih sistemov
in GitHub vej [Tabela 2].

Python

Python razvojno okolje je na voljo na Red Pitaya operacijskih sistemih novejših od 2.00-30, kjer se trenutno
uporablja različica Python 3.10. Vsaka Python funkcija ima istoimensko C funkcijo in z nekaj izjemami sprejema
tudi enake parametre. Python knjižnice lahko najdemo v direktoriju »/opt/redpitaya/lib/python« znotraj Red
Pitaya Linux operacijskega sistema [3].

Glavni knjižnici sta »rp.py« in »rp_hw.py«, ki imata enako funkcionalnost kot istoimenski C knjižnjici.

Vse Python funkcije v ozadju neposredno kličejo istoimenske C funkcije, zato kot enega izmed parametrov
vedno vrnejo tudi uspešnost izvedbe, kar je za Python neobičajno. Prvi vrnjen parameter je vedno uspešnost
izvedbe zagnane funkcije, vsi nadaljnji parametri pa so pričakovani podatki.

https://github.com/RedPitaya/RedPitaya/tree/master/rp-api
https://redpitaya.readthedocs.io/en/latest/appsFeatures/remoteControl/command_list.html#list-of-supported-scpi-api-commands

64

6.2 Prenos in prevajanje programske kode

Ko smo z našim programom zadovoljni ga lahko prenesemo in testiramo na Red Pitayi. Pred tem preverimo,
da je »končna vrstična sekvenca« (angl. »End of line sequence«) nastavljen na LF (angl. »Line Feed«) in ne na
CRLF (angl. »Carrige Return Line Feed«) oziroma CR (angl. »Carrige Return«) [Slika 70]. Ta nastavitev nam lahko
povzroča precej preglavic pri zagonu C programa, saj prevajalnik javi napako zaradi nedefiniranega znaka
oziroma ukaza, poda pa prvo vrstico programa. Po spremembi ne smemo pozabiti shraniti programa.

Slika 70: Pozicija nastavitve »končne vrstične sekvence« v programu VSCode

6.2.1 Prenos programa na Red Pitayo

Preko aplikacije BitWise SSH, oziroma preko terminala vzpostavimo SSH povezavo z Red Pitayo, kot je to
opisano v poglavju »SSH povezava«. Nato program prenesemo iz direktorija na računalniku v domači direktorij
(»/root«) na Red Pitayi [Slika 71].

Slika 71: Prenos programa na Red Pitayo s programom Bitvise SSH

6.2.2 Prevajanje programa v jeziku C

Preden lahko program zaženemo na Red Pitayi, ga moramo prevesti. V okviru vaj, oziroma ko ne uporabljamo
Red Pitayinih knjižnic, to lahko storimo z ukazom »gcc«, ki zažene Linuxov prevajalnik GCC (»GNU Compiler
Collection). Primer prevedbe programa:

gcc -o test test.c

GCC vzame program »test.c«, ga prevede, in izhod shrani kot »test«. Pri prevedbi nam prevajalnik javi
morebitne napake, ki jih moramo pred uspešno prevedbo odpraviti.

65

Program moramo po vsaki posodobitvi kode prevesti, saj se sicer zažene starejša različica kode. Najbolje je
prevajanje izvesti ob vsakem kopiranju programa iz računalnika na Red Pitayo ali urejanju programa znotraj
Linux operacijskega sistema.

Program nato poženemo z vpisom »./test« v terminal.

Uporaba Red Pitaya programskih knjižnic

Postopek prevajanja je daljši, če smo v program vključili tudi Red Pitayine programske knjižnice, saj moramo
med prevedbo ali kasnje programu podati povezavo do njih. Najlažje to storimo z uporabo datoteke z navodili,
ki ji pravimo »Makefile«, nato pa program prevedemo z uporabo ukaza »make«. »make« je Linux orodje, ki
omogoča enostavnejšo izvedbo vnaprej določenega zaporedja ukazov, ki ga določimo znotraj datoteke
»Makefile«. Za manjše projekte je uporaba priporočena, pri večjih projektih, ki zavzemajo več programskih
datotek pa skoraj nujna, saj prihrani veliko dela pri pisanju ukazov.

Datoteko »Makefile« za prevedbo C ukazov na Red Pitayi najdemo tukaj [3]. Pri izbiri moramo biti previdni, da
izberemo datoteko, ki ustreza naši različici operacijskega sistema (1.04-28):

MODEL ?= Z10

CFLAGS = -std=gnu11 -Wall ## -Werror

CFLAGS += -I/opt/redpitaya/include -D$(MODEL)

LDFLAGS = -L/opt/redpitaya/lib

LDLIBS = -static -lrp

ifeq ($(MODEL),Z20_250_12)

INCLUDE += -I/opt/redpitaya/include/api250-12

LDLIBS += -lrp-gpio -lrp-i2c

endif

LDLIBS += -lrp-hw -lm -lstdc++ -lpthread

List of compiled object files (not yet linked to executable)

PRGS = digital_led_blink \

 api_example_2 \

 api_example_3 \

 api_example_x

OBJS := $(patsubst %,%.o,$(PRGS))

SRC := $(patsubst %,%.c,$(PRGS))

all: $(PRGS)

$(PRGS): %: %.c

 $(CC) $< $(CFLAGS) $(LDFLAGS) $(LDLIBS) -o $@

clean:

 $(RM) *.o

 $(RM) $(OBJS)

Pred kopiranjem datoteke na Red Pitayo, jo moramo prilagoditi naši kodi. Po shranitvi na računalnik, jo
odpremo v urejevalniku kode, ter popravimo argument »PRGS«. Izbrišemo vse za enačajem in zatem zapišemo
imena C programov, ki jih želimo prevesti. V imenih izpustimo končnico ».c«. Če želimo hkrati prevesti več
programov vsako datoteko ločimo z znakom »\«.

»Makefile« shranimo in prenesemo na Red Pitayo v domači direktorij (»/root«).

https://redpitaya.readthedocs.io/en/latest/appsFeatures/remoteControl/API_scripts.html#compiling-and-running-custom-code

66

Program lahko zatem enostavno prevedemo z ukazom:

make test

6.2.3 Zagon programa v jeziku Python

Pri zagonu Python programov ne potrebujemo dodatnih datotek, saj je se na Red Pitayi že nahaja Python
prevajalnik. Poskrbeti moramo le, da program lahko zaženemo. To storimo z ukazom »chmod«.

chmod +x test.py

6.3 Dodatne informacije

Dodatne informacije lahko najdete na naslednjih spletnih straneh:

• Red Pitaya navodila za zagon C in Python aplikacij[30]

• Red Pitaya GitHub

V primeru težav

Tukaj lahko najdete rešitve za nekatere najpogostejše napake pri zagonu C in Python aplikacij.

Brez uporabe Red Pitaya knjižnic

• Na večino napak v programu vas opozori že sam prevajalnik, večino ostalih se da razrešiti z nekaj iskanja

po spletu.

• Pri težavah s prevajanjem C in Python aplikacij preverite končno vrstično sekvenco »End of line

sequence«, ki mora biti nastavljena na LF (»Line Feed«).

Z uporabo Red Pitaya knjižnic

• Poskrbite, da uporabljate pravilne funkcije, ki so na voljo v naloženem operacijskem sistemu. Hitro se

lahko zgodi, da uporabite funkcije, ki so na voljo le v novejših različicah Red Pitaya OS. Vsaka funkcija

na seznamu ukazov ima navedeno tudi različico operacijskega sistema, kjer je bila prvič na voljo [30].

• Preverite različico »Makefile« datoteke in poskrbite, da se ujema s tisto namenjeno za trenutni

operacijski sistem [3]. Če vas program opozori, da je bil »Makefile« ustvarjen v prihodnosti, spremenite

čas operacijskega sistema z ukazom »date«. Nastavite trenutni čas in datum. Primer:

date -s “19 Jan 2024 14:00:00”

• Pri zagonu Python programov na 2.00-30 Python knjižnice niso pravilno povezane. Uporabite navodila

na Red Pitaya spletni strani [3].

https://redpitaya.readthedocs.io/en/latest/appsFeatures/remoteControl/API_scripts.html#c-and-python-applications
https://github.com/RedPitaya/RedPitaya/tree/master/rp-api
https://redpitaya.readthedocs.io/en/latest/appsFeatures/remoteControl/command_list.html#list-of-supported-scpi-api-commands
https://redpitaya.readthedocs.io/en/latest/appsFeatures/remoteControl/API_scripts.html#compiling-and-running-custom-code
https://redpitaya.readthedocs.io/en/latest/appsFeatures/remoteControl/API_scripts.html#running-python-applications
https://redpitaya.readthedocs.io/en/latest/appsFeatures/remoteControl/API_scripts.html#running-python-applications

67

7 Viri

[1] Red Pitaya d.o.o., „What is Red Pitaya?“, Red Pitaya documentation. Pridobljeno: 14. januar 2025. [Na
spletu]. Dostopno na: https://redpitaya.readthedocs.io/en/latest/intro.html

[2] Red Pitaya d.o.o., „Applications and Features“, Red Pitaya documentation. Pridobljeno: 14. januar
2025. [Na spletu]. Dostopno na:
https://redpitaya.readthedocs.io/en/latest/appsFeatures/appsFeatures.html

[3] Red Pitaya d.o.o., „C and Python Applications“, Red Pitaya documentation. Pridobljeno: 14. januar
2025. [Na spletu]. Dostopno na:
https://redpitaya.readthedocs.io/en/latest/appsFeatures/remoteControl/API_scripts.html

[4] Red Pitaya d.o.o., „Build FPGA image“, Red Pitaya documentation. Pridobljeno: 14. januar 2025. [Na
spletu]. Dostopno na:
https://redpitaya.readthedocs.io/en/latest/developerGuide/software/build/fpga/fpga.html

[5] Red Pitaya d.o.o., „STEMlab 125-14“, Red Pitaya documentation. Pridobljeno: 15. januar 2025. [Na
spletu]. Dostopno na: https://redpitaya.readthedocs.io/en/latest/developerGuide/hardware/125-
14/top.html

[6] Red Pitaya d.o.o., „Connect to Red Pitaya“, Red Pitaya documentation. Pridobljeno: 14. januar 2025.
[Na spletu]. Dostopno na: https://redpitaya.readthedocs.io/en/latest/quickStart/first.html

[7] Red Pitaya d.o.o., „Establish remote SSH connection“, Red Pitaya documentation. Pridobljeno: 18.
januar 2025. [Na spletu]. Dostopno na:
https://redpitaya.readthedocs.io/en/latest/developerGuide/software/console/ssh/ssh.html

[8] Red Pitaya d.o.o., „Connection types“, Red Pitaya documentation. Pridobljeno: 18. januar 2025. [Na
spletu]. Dostopno na: https://redpitaya.readthedocs.io/en/latest/quickStart/connect/connect.html

[9] Red Pitaya d.o.o., „FAQ“, Red Pitaya documentation. Pridobljeno: 18. januar 2025. [Na spletu].
Dostopno na:
https://redpitaya.readthedocs.io/en/latest/quickStart/troubleshooting/troubleshooting.html

[10] Bitvise Limited, Bitvise SSH Client. Bitvise Limited. Pridobljeno: 18. januar 2025. [Na spletu]. Dostopno
na: https://bitvise.com/ssh-client-download

[11] balenaEcher.dev, balenaEtcher. balenaEcher.dev. Pridobljeno: 18. januar 2025. [Na spletu]. Dostopno
na: https://etcher.balena.io/

[12] „Prepare SD card“, Red Pitaya. Pridobljeno: 18. januar 2025. [Na spletu]. Dostopno na:
https://redpitaya.readthedocs.io/en/latest/quickStart/SDcard/SDcard.html

[13] Red Pitaya d.o.o., „Oscilloscope & Signal Generator“, Red Pitaya documentation. Pridobljeno: 14.
januar 2025. [Na spletu]. Dostopno na:
https://redpitaya.readthedocs.io/en/latest/appsFeatures/applications/oscSigGen/osc.html

[14] Red Pitaya d.o.o., „Bode Analyzer“, Red Pitaya documentation. Pridobljeno: 14. januar 2025. [Na
spletu]. Dostopno na:
https://redpitaya.readthedocs.io/en/latest/appsFeatures/applications/bode/bode.html

[15] Advanced Micro Devices, Inc., AMD VivadoTM Design Suite. Advanced Micro Devices, Inc. Pridobljeno:
18. januar 2025. [Na spletu]. Dostopno na: https://www.amd.com/en/products/software/adaptive-
socs-and-fpgas/vivado.html

[16] Intel Corporation, ModelSim-Intel® FPGAs Standard Edition. Intel Corporation. Pridobljeno: 18. januar
2025. [Na spletu]. Dostopno na: https://www.intel.com/content/www/us/en/software-
kit/750368/modelsim-intel-fpgas-standard-edition-software-version-18-1.html

[17] Red Pitaya d.o.o., „Installation of Vivado 2020.1“, Red Pitaya knowledge base. Pridobljeno: 19. januar
2025. [Na spletu]. Dostopno na: https://redpitaya-knowledge-
base.readthedocs.io/en/latest/learn_fpga/3_vivado_env/tutorfpga1.html

[18] win.rar GmbH, WinRAR. win.rar GmbH. Pridobljeno: 19. januar 2025. [Na spletu]. Dostopno na:
https://www.win-rar.com/start.html?&L=0

68

[19] LNIV, Faculty of Electrical Engineering, „LNIV Red Pitaya“, Laboratory for Integrated Circuit Design.
Pridobljeno: 19. januar 2025. [Na spletu]. Dostopno na: https://lniv.fe.uni-lj.si/redpitaya/

[20] Red Pitaya d.o.o., RedPitaya v0.94 top module. System Verilog. Red Pitaya d.o.o. Pridobljeno: 14.
januar 2025. [Na spletu]. Dostopno na: https://github.com/RedPitaya/RedPitaya-
FPGA/blob/master/prj/v0.94/rtl/red_pitaya_top.sv

[21] Xilinx, Inc, „Vivado Design Suite: AXI Reference Guide (UG1037)“. 15. julij 2017. Pridobljeno: 19. januar
2025. [Na spletu]. Dostopno na: https://docs.amd.com/v/u/en-US/ug1037-vivado-axi-reference-guide

[22] Arm Ltd, „AMBA Specifications“, Arm | The Architecture for the Digital World. Pridobljeno: 19. januar
2025. [Na spletu]. Dostopno na: https://www.arm.com/architecture/system-
architectures/amba/amba-specifications

[23] Red Pitaya d.o.o., „Project - v0.94 (2.05-37)“, Red Pitaya documentation. Pridobljeno: 19. januar 2025.
[Na spletu]. Dostopno na:
https://redpitaya.readthedocs.io/en/latest/developerGuide/software/build/fpga/regset/2.05-
37/v0.94.html

[24] Red Pitaya d.o.o., RedPitaya-FPGA/prj/v0.94/rtl. Verilog, System Verilog. Red Pitaya d.o.o. Pridobljeno:
19. januar 2025. [Na spletu]. Dostopno na: https://github.com/RedPitaya/RedPitaya-
FPGA/blob/master/prj/v0.94/rtl/red_pitaya_top.sv

[25] Red Pitaya d.o.o., „LED Counter“, Red Pitaya knowledge base. Pridobljeno: 19. januar 2025. [Na spletu].
Dostopno na: https://redpitaya-knowledge-
base.readthedocs.io/en/latest/learn_fpga/4_lessons/LedCounter.html

[26] Red Pitaya d.o.o., „Programming the FPGA“, Red Pitaya knowledge base. Pridobljeno: 14. januar 2025.
[Na spletu]. Dostopno na: https://redpitaya-knowledge-
base.readthedocs.io/en/latest/learn_fpga/3_vivado_env/tutorfpga2.html

[27] Microsoft, Visual Studio Code. Microsoft. Pridobljeno: 19. januar 2025. [Na spletu]. Dostopno na:
https://code.visualstudio.com/

[28] Python Software Foundation, Python. (3. december 2024). Python. Python Software Foundation.
Pridobljeno: 16. januar 2025. [Na spletu]. Dostopno na: https://www.python.org/

[29] Red Pitaya d.o.o., Red Pitaya GitHub Repository. Pridobljeno: 14. januar 2025. [Na spletu]. Dostopno
na: https://github.com/RedPitaya

[30] „List of supported SCPI & API commands“, Red Pitaya documentation. Pridobljeno: 19. januar 2025.
[Na spletu]. Dostopno na:
https://redpitaya.readthedocs.io/en/latest/appsFeatures/remoteControl/command_list.html

