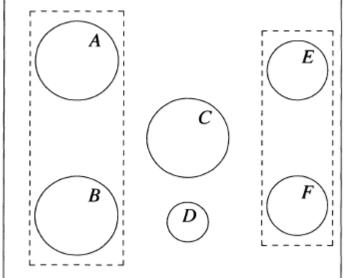


Univerza v *Ljubljani* Fakulteta *za elektrotehniko*

Laboratorij za načrtovanje integriranih vezij

Preizkušanje elektronskih vezij

Fault Diagnosis Diagnoza napak

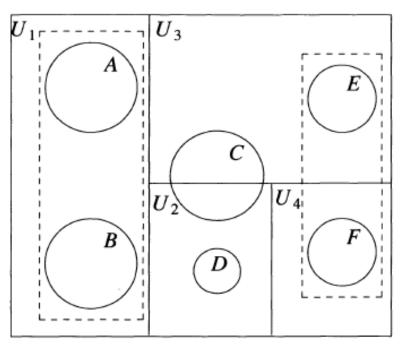

- Introduction
- Basic concepts of diagnosis
- Fault-Dictionary method and Diagnostic tree

- If the unit under the test (UUT) is to be repaired, the cause of the observed error(s) should be diagnosed.
- Diagnosis consists of locating the physical fault(s) in a structural model of the UUT.
- In other words, diagnosis maps the observed misbehavior of the UUT into physical faults affecting its components or their interconnections.
- The degree of accuracy to which faults can be located is referred to as *diagnostic resolution*.
- No external testing experiment can distinguish among functionally equivalent faults.

- The partition of all possible faults into distinct sets of functionally equivalent faults defines the *maximal fault resolution*, which is an intrinsic characteristic of the system.
- The fault resolution of a test sequence reflects its capability of distinguishing among faults, and it is bounded by the maximal fault resolution.
- A test (sequence) that achieves the maximal fault resolution is said to be a *complete fault-location test*.

• Example:

A, B, C, D, E, and F represent the sets of equivalent faults of a system.



The maximal fault resolution is the partition {*A*,*B*,*C*,*D*,*E*,*F*} Test resolution is {*A U B*, *C*, *D*, *E U F*}

- Repairing the UUT often consists of substituting one of its replaceable units (RUs), identified as containing some faults, and referred to as a *faulty RU*, by a good unit.
- Hence, usually we are interested only in locating a faulty RU, rather than in an accurate identification of the fault inside an RU.
- This diagnosis process is characterized by the RU resolution.

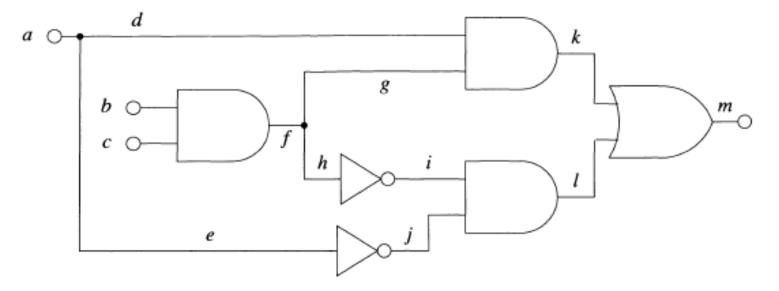
Replacable Unit Resolution (Example)

- U₁, U₂, U₃, and U₄ are the RUs of the system, and the faults are physically partitioned as shown.
 - If the actual fault belongs to A or B, in either case we can identify U₁ as the faulty RU.
 - But if the actual fault belongs to C, then we cannot determine whether the faulty RU is U₂ or U₃.

Replacable Unit Resolution (Example)

- Clearly, the location of the faulty RU is more difficult when equivalent faults span different RUs.
- In our example, the maximal RU resolution, corresponding to the maximal fault resolution, is given by {U₁, U₂, U₃, {U₂, U₃ }, U₄}.
- The RU resolution of any test is bounded by the maximal RU resolution.
- For example, the RU resolution of T is $\{U_1, U_2, \{U_2, U_3\}, \{U_3, U_4\}\}$.
- A test that achieves the maximal RU resolution (i.e., it distinguishes between every pair of nonequivalent faults that reside in different RUs) is said to be a *complete RUlocation test.*

- For the preceding example, suppose that the results of the test do not distinguish between U₃ and U₄.
- In such a case, it is sometimes possible to replace one of the suspected RUs, say U₃, with a good RU, and rerun the experiment.
- If the new results are correct, the faulty RU is the replaced one; otherwise, it is the remaining one (U₄).
- This type of approach is an example of a sequential diagnosis procedure, in which diagnosis and repair are interleaved.


Hierarchical diagnosis

- The diagnosis process is often *hierarchical* such that the faulty RU identified at one level becomes the UUT at the next level.
- For example, to minimize the downtime of a computing system, first-level diagnosis deals with "large" RUs, such as boards containing many components; these are referred to as *field-replaceable units*.
- The faulty board is then tested in a maintenance center, where the objective is to locate a faulty component on the board; this is done to minimize the cost of the replaced unit.
- A typical RU at this level is an IC. Although further repair beyond the IC level is not possible, accurate location of faults inside a faulty IC may be useful for improving its manufacturing process.

Fault diagnosis

- Fault diagnosis can be approached in different ways. The most common approach uses fault simulation to determine the possible responses to a given test in the presence of faults.
- The data base constructed in this step is called a *fault* dictionary.
- To locate faults, one tries to match the actual response obtained from the UUT with one of the precomputed responses stored in the fault dictionary. If this look-up process is successful, the dictionary indicates the corresponding fault(s) or faulty RU(s).

Fault diagnosis (Example)

- Circuit has 13 lines and 26 single stuck-at faults.
- Fault collapsing partitions 26 faults into 14 equivalence classes.

1.
$$\{a_0\}$$
8. $\{g_1\}$

2. $\{a_1\}$
9. $\{i_0, h_1, l_0, j_0, e_1\}$

3. $\{b_1\}$
10. $\{i_1, h_0\}$

4. $\{c_1\}$
11. $\{j_1, e_0\}$

5. $\{d_1\}$
12. $\{k_0, d_0, g_0\}$

6. $\{f_0, b_0, c_0\}$
13. $\{k_1, l_1, m_1\}$

7. $\{f_1\}$
14. $\{m_0\}$

Fault diagnosis (Example)

5 test patterns detect all single stuck-at faults.

	a b c	Φ	a_0	<i>a</i> ₁	b_1	<i>c</i> ₁	d_1	f_0	f_1	<i>g</i> ₁	i ₀	<i>i</i> ₁	j_1	k_0	k_1	m_0
t_1	0 1 1	0	0	1*	0	0	1*	1*	0	0	0	1*	0	0	1*	0
t_2	1 1 0	0	1*	0	0	1*	0	0	1*	1*	0	0	1*	0	1*	0
t_3	101	0	1*	0	1*	0	0	0	1*	1*	0	0	1*	0	1*	0
t_4	1 1 1	1	0*	1	1	1	1	0*	1	1	1	1	1	0*	1	0*
t 5	001	1	1	0*	0*	1	1	1	0*	1	0*	1	1	1	1	0*

Note that the test set does not distinguish between d_1 and i_1 , or between g_1 and j_1 .

For this simple example, we can arrange the fault dictionary as a mapping between the 12 distinct responses and the faults that can produce them. Thus if we obtain the response 00001, the dictionary will point to the faults $\{k_{\alpha}, d_{\alpha}, g_{o}\}$.

Fault Dictionary and Diagnostic Tree

- Possible test results are shown in the form of a *diagnostic tree*.
- The results of a test are indicated as pass (P) or fail (F). Every test distinguishes between the faults it detects and the ones it does not.
- The set of faults shown in a rectangle are equivalent under the currently applied test set.
- We can observe that some faults are uniquely identified even before the entire test sequence is applied. For example, k₁ is the only fault detected in both t₁ and t₂; thus, if both t₁ and t₂ fail, the fault is located within the equivalence class {k₁, l₁, m₁}.
- Here the testing experiment can stop after the first two tests, since no more diagnostic information can be obtained from the following tests.