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Introduction

Test generation is the task of searching for a test pattern
that will detect a specific fault.

This process is called ATPG — Automatic Test Pattern
Generation.

Without powerful and efficient ATPG, chips will mostly
depend on design for testability techniques (-> increasing
area and cost).

ATPG is one of the most important, challenging and
difficult problem.

The goal of this chapter is to present ATPG techniques for
various fault models.



Introduction

For any defective chip, which is functionally different from
the defect-free chip, there must exist at least one input
(test vector) that can differentiate both chips.

The goal of ATPG is to efficiently generate that test vector.
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Introduction

If ATPG is capable to deliever high-quality test paterns
(high fault coverage and small test set), DFT is no longer
necessary.

As it is difficult to generate test vectors targeting all
possible, ATPG operate on an abstract representation of
defects, referred as faults.

The most popular and used fault model is single stuck-at
fault model.



Introduction

Single stuck-at fault model assumes that a circuit node is tied
to logic 1 or logic O

single stuck-at 1, s-s-1

single stuck-at 0, s-s-0
Consider the single stuck-at 1 at node d (d/1).
First, we have to activate the fault, i.e. to find the difference
between the fault-free circuit and the circuit with the fault
d/1.
Then, we have to propagate information about the fault (fault
signal) to the circuit output node.

3 \\— stuck-at 1

] > d>< \
b 7

o J/

o

c



Introduction

ATPG systems attempts to generate test vectors for every
possible fault in the circuit.

In this example, other faults d/0, a/0, a/1, b/0, are
targeted by ATPG.
As some of the faults in the circuit can be logically

equivalent, no test can be obtained to distinguish
between (these faults form a set of equivalent faults).

Therefore, fault collapsing is used before ATPG in order to
reduce the number of faults to consider.



Random Test Generation

Random Test generation (RTG) is one of the simplest
methods for generating vectors.

Test vectors are randomly generated and fault simulated
(fault graded) on the circuit under test (CUT).

Because no specific fault is targeted , the RTG complexity
is low.

Disadvantages of RTG are large test set size and not
sufficiently high fault coverage.

Logic values are randomly generated at the primary
inputs, with equal probability of assigning a logic 1 or
logic O to each primary input.

Note, that pseudo-random generator is most often used -
> repeated test set with the same pseudo-random
generator.



Random Test Generation

Level of confidence on a random test set T can be
measured as the probability that T can detect all stuck-at
faults in the circuit.

For N random vectors, the test quality ty indicates that all
detectable stuck-at faults are detected by these N random
vectors.

Some faults (random-pattern resistant faults) are difficult
to test with RTG. Example:
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Random Test Generation

To target random-pattern resistant faults, biasing is
required -> input vectors are no longer uniformly
distributed.

Determining the optimal bias values for each primary
input is difficult task.

Minimum detection probability of a detectable fault f can
be determined by the output cone in which f resides.
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Exhaustive Test Generation

If the combinationa circuit has few primary inputs,
exhaustive testing (ET) is a viable option.

Every possible input vector is enumerated.

This is superior to RTG since RTG can produce duplicated
vectors.

For large circuit, ET is impractical.

But, it may be possible to partition the circuit and only
exhaust the input vectors within each cone (pseudo-
exhaustive testing, PET).

For the circuit with three PO, each with corresponding

cone with n,, n, and n; PI, the number of PET is at most
2n1 + 2n2 + 2n3



Theoretical Background: Boolean Difference

» Consider s-s-0 on primary input y (y s-s-0).
» Faulty circuit f* = f(y=0)
» Test vector must satisfy equation:
f(y=1) EX-OR f(y=0) =1
» Also, fault must be first excited:
y - f(y=1) EX-OR f(y=0) =1

f(y=1) EX-OR f(y=0) is called Boolean Difference of f with
respect to y
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Untestable Fault

» If there exists no input vector to test a certain fault,
the fault is untestable (or redundant)

» Consider the fault z/0.
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Stuck-at ATPG for Combinational Circuits

» In ATPG, there are two main tasks:
1) Excitation of target fault
2) Propagation of the fault to the primary output
» Logic values for fault-free and faulty circuit are
needed (v and v;).
» 5-valued algebra (Roth): 0, 1, X, D and D”is used.
D=1/0and D'=0/1.
» Boolean operators (AND, OR, NOT, XOR) can be used
on 5-valued algebra.

» The simplest way to perform Boolean operations is to
represent each component value into the v/vf form
and perform Boolean operations on fault-free and
faulty value separately.



Boolean operation for 5-valued algebra
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Naive ATPG Algorithm

» Worst-case computational complexity is exponential.

» All possible input patterns may have to be tried
before a vector is found or that the fault is declared
as undetectable.

» Intelligence mechanism can be used to reduce the
search space.

Algorithm 1 Naive ATPG (C, f)

1: while a fault-effect of f has not propagated to a PO and all possible vector combinations have
not been tried do

2: pick a vector, v, that has not been tried;

3: fault simulate v on the circuit C with fault f;

4: end while




ATPG Algorithm

» ATPG may make a wrong decision for specific logic
value on PI.

» In this case, the decision should be altered (opposite
logic value) on PI.

» The process of making decisions and and reversing
decisions results in a decision tree.

» Each node in the decision tree represents a decision
variable.

» If only two choices are possible for each decision
variable, decision tree is a binary tree.



Decision Tree

» Example of decision tree.
» At each decision, the search space is halved.

» If a test vector exists, there must be a path along the
decision tree that leads to the test vector.
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Backtracking

» Whenever a conflict is detected, the search must
return to some earlier point in decision process.

» The reversal of decision is called a backtrack.

» The easiest mechanism to keep track of decisions is
to reverse the most recent decision made.

» When reversing any decision, the signal values
implied by the assignment of the previous decision
variables must be undone. —
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Basic ATPG Algorithm

» Given a target fault g/v in a fanout-free
combinational circuit C, procedure to generate a
vector for the fault (Algorithm 2).

» Functions JustifyFanoutFree() and
PropagateFanoutFree() are recursive functions.

Algorithm 2 Basic Fanout Free ATPG (C, g/v)

1: initialize circuit by setting all values to X;
2: JustifyFanoutFree(C, g, v); /* excite the fault by justifying line g tov */
3: PropagateFanoutFree(C, g); /* propagate fault-effect from g to a PO */




Basic ATPG Algorithm

» JustifyFanoutFree(g,v) recursively justifies
predecessor signal of g until all signals that should be
justified are justified from the PI.

Algorithm 3 JustifyFanoutFree(C. g, v)

l: g =v;
2: if gate type of g == primary input then
3: return;
4: else if gate type of g == AND gate then
5: ifv==1 then
6: for all inputs h of g do
7 JustifyFanoutFree(C, h, 1);
8: end for
9: else {[v==0}
10: h = pick one input of g whose value == X;
11: JustifyFanoutFree(C, h, O);
12:  endif
13: else if gate type of g == OR gate then
14.

15: end if




Justify Function

» Example circuit C, justify g=1
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f
")

d
-

A
b /

call #1: JustifyFanoutFree(C, g, 1)
call #2: JustifyFanoutFree(C, a, 1)
call #3: JustifyFanoutFree(C,/, 1)
call #5: JustifyFanoutFree(C, c, 0)

Input vector abcd = 1XOX justifies g=1



Justify Function

» Example circuit C, justify g=1
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call #1: JustifyFanoutFree(C, g, 1)
call #2: JustifyFanoutFree(C, a, 1)
call #3: JustifyFanoutFree(C, f, 1)
call #4: JustifyFanoutFree(C, d, 0)
call #5: JustifyFanoutFree(C, c, 0)

Input vector abc = 1X0 justifies g=1



Justify Function

» In fanout-free circuit, JustifyFanoutFree() routine will
always be able to set g to the desired value v and no

conflict wil occur.

» This is no true for circuits with fanout branches -> two
or more signals tracing back to the same fanout stem

are correlated.
» For example, justifying d=1 is impossible (conflict on a)




Justify Function

» Example circuit C, justify z=0

» Due to fanout structure, choices for decisions are
limited.




Propagate Function

» Once the fault is excited, the next step is to propagate
the fault-effect to PO.

» PropagateFanoutFree() is also a recursive function.

» The fault-effect is propagated one gate at a time until
it reaches PO.

» Example: propagate D at g to PO z.

call #1: PropagateFanoutFree(C, g)
call #2: JustifyFanoutFree(C, 1, 0)
call #3: JustityFanoutFree(C, b, 0)
call #4: PropagateFanoutFree(C, z)

Input vector abc = 100 justifies g=1



Propagate Function Algorithm

Algorithm 4 PropagateFanoutFree(C, g)

YoNORLONT

. if g has exactly one fanout then
h = fanout gate of g;
if none of the inputs of h has the value of X then
backfrack;
end if
else {g has more than one fanout}
h = pick one fanout gate of g that is unjustified;
. end if
. if gate type of h == AND gate then
for all inputs, j, of h, such that j# g do
if the value on j == X then
JustifyFanoutFree(C, j, 1);
end if
end for
. else if gate type of h == OR gate then
for all inputs, j, of h, such that j £ g do
if the value on j == X then
JustifyFanoutFree(C, j, 0);
end if
end for
. else if gate type of h==... gate then

. end if
: PropagateFanoutFree(C, h);




Justify Function, Decisions

» Example circuit C, fault g/1.

» For justification g=0, either a =0 or f=0 can be
selected.

» ATPG should make a decision.

» Testability measures can be used as a guide to make
good decisions (a = 0 should be better than f = 0)
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D Algorithm (Roth)

» The first complete ATPG algorithm -> if the fault is
detectable, D algorithm will find a test vector.

» D or D of the target fault is propagated to PO.

» D-frontier: all gates whose output value is x and fault-
effect is at one or more of its inputs.

» Example of D-frontier with one gate:
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D Algorithm (Roth)

» If the D-frontier is empty, the fault can no longer be
detected.

» Example of D-frontier with two gates:

D =




J-Frontier

» J-frontier: all gates whose output values are known
(any value in 5-valued logic) but they are not yet
justified by its inputs.

» Example of J-frontier:

J frontier
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D Algorithm, Example

» Propagation routine will set all side inputs of the path
a-> b-> ¢ to propagate the signal D to PO.

» These side input gates x, y, z, form the J-frontier as
they are not yet justified.

D propagates fo PO
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D Algorithm, Pseudo-Code

» The overall procedure for the D algorithm is:

Algorithm 5 D-Algorithm(C, f)

- Initialize all gates to don't-cares;

. set a fault-effect (D or D) on line with fault f and insert it to the D-frontier;
: J-frontier = ¢;

: result = D-Alg-Recursion(C);

. If result == success then

print out values at the primary inputs;

. else

print fault f is untestable;

. end if




D Algorithm, D-Alg-Recursion

Alg Algorithm & D-Alg-Recursion(C)

1: if there is a conflict in any assignment or D-frontier is @ then

2:  return failure;

3: end if

4: [* first propagate the fault-effect to a PO */

5: if no fault-effect has reached a PO then

6: while not all gates in D-frontier has been tried do

7 g = a gate in D-frontier that has not been tried;

8 set all unassigned inputs of g to non-controlling value and add them to the J-frontier;
9 result = D-Alg-Recursion(C};
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1¢ 10: if result == success then

11 11: return (success);

12 12: end if

12 13: end while

14 14: return (failure):

15 15: end if {fault-effect has reached at least one PO}
1€ 16: if J-frontier is @ then

17 17: return (success);

18 18: end if
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: g = a gate in J-frontier;

2 20: while g has not been justified do
21 21: j= an unassigned input of g;
2¢ 22: setj=1 and insert j=1 to J-frontier;
23 23: result = D-Alg-Recursion(C);
24 24: it result == success then

2 2b:  return (success):

2F 26: else try the other assignment
27 27: setj=0;

28 28:  end if

2¢ 29: end while

3¢ 30: return(failure);




D Algorithm, Detecting Conflicts

» If there any conflicts, they should be detected asap.
» Example: justifying a =1 and b =0 is not possible.

» Detecting such conflicts helps to avoid future
backtracks.




D Algorithm, Examples

» Consider faults f/0 and f/1 in the sample circuit.

a \\g
% Y, .
— )

J UL




D Algorithm, Examples

» Consider fault g/1 in the sample circuit.
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PODEM

» In D algorithm, decisions can be made at every node

» However, the final result of every test generation step
is the test vector — signals at PI.

» Number of Pis is generally much fewer than number
of nodes in the circuits -> decisions are restricted only
to Pis.



PODEM - Pseudo Code

» The overall procedure for the PODEM algorith is:

Algorithm 7 PODEM(C, f)

Initialize all gates to don’t-cares;
D-frontier = ;
result = PODEM-Recursion(C);
if result == success then

print out values at the primary inputs;
else

print fault f 1s untestable;
end if
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PODEM - PODEM-Recursion

Algorithm 8 PODEM-Recursion(C)

. if fault-effect is observed at a PO then
return (success);

. end if

: (g, v) = getObjective(C);

: (pi, u) = backtrace(g, v);

: logicSimulate_and_imply(pi, u);

: result = PODEM-Recursion(C);

. if result == success then
return(success);

. end if

: /* backtrack */

: logicSimulate_and_imply(pi, u);

: result = PODEM-Recursion(C);

. if result == success then
return(success);

- end if

: /* bad decision made at an earlier step, reset pr */
: logicSimulate_and_imply(pi, x);

: return(failure);
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PODEM - getObjective

Algorithm 9 getObjective(C)

. if fault is not excited then

return (g, v);

. end if

: d = a gate in D-frontier:

: g = an Input of d whose value Is x;
: v = non-controlling value of d;

: return (g, v);
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PODEM -

Backtrace

Algorithm 10 backtrace(C)

ke
MY =

(-
QUOUONIIAH W=

Li=g;
- num_inversion = O;
. while i # primary input do

i = an Input of i whose value Is x;

if i is an inverted gate type then
num_inversion+-+;

end if

. end while
. If num_inversion == odd then

V=yV;

. end if
: return(i, v);




PODEM - Example

» Consider fault f/0:

a g
d ‘ ; ~  f ‘
A .
i r
c ' h ) >
e —
b /
getObjective() backtrace() logicSim() D-frontier
f:l CZO d:Orf:Dr g
e=0,h=0
a=1 a=1 g=D,z=D f/O detected

Test vector 1X0




PODEM - Example

» Consider fault b/0:

b

a —
[’_‘ |
-/
getObjective() backtrace() logicSim() D-frontier
b=1 a=0 b=1,c=0,d=0 Y
a= 1 (reversal) — b=0,c=1,d=0 Y
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Fault b/0 is undetectable.




PODEM - Example

» Consider fault g/1:

\
2 N\ g s-a-1 h_ /;"
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| / ; )
I
getObjective() backtrace() logicSim() D-frontier
g=0 a=0 g=D,c=0 h (but no
d=0,i=0 X-path to PO)
a=1 (reversal) — c=1,d=1 ]

Fault g/1 is undetectable.




FAN

» PODEM can still make an excessive number of
decisions.

» FAN (Fanout-Oriented TG) algorithm improves
PODEM by reducing the number of decision points.

» FAN identifies headlines in the circuit, which are the
output signals of fanout-free regions -> any value
assignment on the headline can always be justified by
its fanin cone.

» Backtrace function stops at Pl (as in PODEM) or at
headlines, thus reducing the number of decision
points.



FAN - Example

» Consider objective z = 1.
» PODEM: a=1, c=1, d=1, e=1, f=1
» FAN: x=1, y=1

headlines




FAN — Multiple Objectives

» FAN considers simultaneously multiple objectives.
» Justify k=0
Selecting b=0 causes a conflict later with objective m=1
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Logic Implications

» Logic implications capture the effect of assigning logic
values on other gates in order to make better
decisions.

» Example:
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» They can be divided into
Static logic implications
Dynamic logic implications



Static Logic Implications

» Direct implications
» Example, implication of logic value f = 1.
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Static Logic Implications

» Indirect implications

» Can be computed by performing logic simulation on
the current set of logic implications.

» Example, implication of logic value f = 1.



Static Logic Implications

» Extended backward implications

» Can be computed by performing logic simulation on
the current set of logic implications.

» Example, implication of logic value f = 1.
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Dynamic Logic Implications

» Static logic implications are computed once for the
entire circuit, dynamic implications are performed
during the ATPG process.

» Example, implication of logic value for z=0 by c = 1.
» d=0 ->{a=0, b=0} e=0 -> {b=0}
» Dynamic implication for z=0 by c =1 -> {b=0}




Dynamic Logic Implications

» Dynamic logic implications can be used also for
signals with fault-effect.

» Example, fault signal is on node b. In order to
propagate fault signal to PO z, necessary condition is

f=1.
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Test Generation for Sequential Circuits

» One test vector may be insufficient to detect the
target fault since the exication and propagation
conditions may necessitate some of the flip-flop
values.

» General model of sequential circuit:

Primary ~ Primary

Inputs Outputs
— ———

Combinational Logic

Clock

Memory
Elements



Time Frame Expansion

» Method for transforming sequential circuit into
combintional circuit over several time frames
(iterative logic array).

» Target fault is present in every time frame.

PRIMARY INPUTS
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Time frame =k Time frame 0 Time frame 1 Time frame j



5-Valued Algebra is Insufficient

» Consider the target fault b/0.

» Values a=1/0 or a=1/1 propagates the fault signal
over the AND gate.

» This can be written as a=1/X.




5-Valued Algebra is Insufficient

» Consider the target fault b/1.

» Values a=1/1 or a=0/1 propagates the fault signal
over the AND gate.

» This can be written as a=X/1.

» Additional values are therefore: 1/X, 0/X, X/1, X/0, all
together 9 values (9-Valued Algebra)




Gated Clocks

» Gated clocks are used for power saving.
» Tranformation are used to ease ATPG process.
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Multiple Clocks

» Multiple clocks benefit performance and power as
circuit blocks are partitioned to different clock
domains.

» Example of transformation:

a D Q+— new a D Q—
Clock > >
e — -
b D Q new b D O
Clock2 —[> f(Clock1, . ~
Clock2)




Other issues in Deterministic TPG

» Untestable fault identification

» Multiple-line conflict analysis

» Genetic algorithms

» Testing for bridging and delay faults

» Testing of acyclic sequential circuits

» Using testing for logic and power optimization



