
Generacija testnih vzorcev

Test pattern generation

Univerza v Ljubljani

Fakulteta za elektrotehniko

Preizkušanje elektronskih vezij

Laboratorij za načrtovanje integriranih vezij

Overview

 Introduction

 Theoretical Background in Boolean Difference

 Designing a Stuck-at ATPG for Combinational Circuits

 Designing a Sequential ATPG

 ATPG for Non-Stuck-At Faults

 Other Issues in Test Generation

Introduction

 Test generation is the task of searching for a test pattern
that will detect a specific fault.

 This process is called ATPG – Automatic Test Pattern
Generation.

 Without powerful and efficient ATPG, chips will mostly
depend on design for testability techniques (-> increasing
area and cost).

 ATPG is one of the most important, challenging and
difficult problem.

 The goal of this chapter is to present ATPG techniques for
various fault models.

Introduction

 For any defective chip, which is functionally different from
the defect-free chip, there must exist at least one input
(test vector) that can differentiate both chips.

 The goal of ATPG is to efficiently generate that test vector.

Introduction

 If ATPG is capable to deliever high-quality test paterns
(high fault coverage and small test set), DFT is no longer
necessary.

 As it is difficult to generate test vectors targeting all
possible, ATPG operate on an abstract representation of
defects, referred as faults.

 The most popular and used fault model is single stuck-at
fault model.

Introduction

 Single stuck-at fault model assumes that a circuit node is tied
to logic 1 or logic 0

 single stuck-at 1, s-s-1

 single stuck-at 0, s-s-0

 Consider the single stuck-at 1 at node d (d/1).

 First, we have to activate the fault, i.e. to find the difference
between the fault-free circuit and the circuit with the fault
d/1.

 Then, we have to propagate information about the fault (fault
signal) to the circuit output node.

Introduction

 ATPG systems attempts to generate test vectors for every
possible fault in the circuit.

 In this example, other faults d/0, a/0, a/1, b/0, are
targeted by ATPG.

 As some of the faults in the circuit can be logically
equivalent, no test can be obtained to distinguish
between (these faults form a set of equivalent faults).

 Therefore, fault collapsing is used before ATPG in order to
reduce the number of faults to consider.

Random Test Generation

 Random Test generation (RTG) is one of the simplest
methods for generating vectors.

 Test vectors are randomly generated and fault simulated
(fault graded) on the circuit under test (CUT).

 Because no specific fault is targeted , the RTG complexity
is low.

 Disadvantages of RTG are large test set size and not
sufficiently high fault coverage.

 Logic values are randomly generated at the primary
inputs, with equal probability of assigning a logic 1 or
logic 0 to each primary input.

 Note, that pseudo-random generator is most often used -
> repeated test set with the same pseudo-random
generator.

Random Test Generation

 Level of confidence on a random test set T can be
measured as the probability that T can detect all stuck-at
faults in the circuit.

 For N random vectors, the test quality tN indicates that all
detectable stuck-at faults are detected by these N random
vectors.

 Some faults (random-pattern resistant faults) are difficult
to test with RTG. Example:

Random Test Generation

 To target random-pattern resistant faults, biasing is
required -> input vectors are no longer uniformly
distributed.

 Determining the optimal bias values for each primary
input is difficult task.

 Minimum detection probability of a detectable fault f can
be determined by the output cone in which f resides.

Exhaustive Test Generation

 If the combinationa circuit has few primary inputs,
exhaustive testing (ET) is a viable option.

 Every possible input vector is enumerated.

 This is superior to RTG since RTG can produce duplicated
vectors.

 For large circuit, ET is impractical.

 But, it may be possible to partition the circuit and only
exhaust the input vectors within each cone (pseudo-
exhaustive testing, PET).

 For the circuit with three PO, each with corresponding
cone with n1, n2 and n3 PI, the number of PET is at most
2n1 + 2n2 + 2n3

Theoretical Background: Boolean Difference

 Consider s-s-0 on primary input y (y s-s-0).

 Faulty circuit f‘ = f(y=0)

 Test vector must satisfy equation:

f(y=1) EX-OR f(y=0) = 1

 Also, fault must be first excited:
 y · f(y=1) EX-OR f(y=0) = 1

 f(y=1) EX-OR f(y=0) is called Boolean Difference of f with
respect to y

Untestable Fault

 If there exists no input vector to test a certain fault,
the fault is untestable (or redundant)

 Consider the fault z/0.

Stuck-at ATPG for Combinational Circuits

 In ATPG, there are two main tasks:
 1) Excitation of target fault

 2) Propagation of the fault to the primary output

 Logic values for fault-free and faulty circuit are
needed (v and vf).

 5-valued algebra (Roth): 0, 1, X, D and D‘ is used.
 D = 1/0 and D‘ = 0/1.

 Boolean operators (AND, OR, NOT, XOR) can be used
on 5-valued algebra.

 The simplest way to perform Boolean operations is to
represent each component value into the v/vf form
and perform Boolean operations on fault-free and
faulty value separately.

Boolean operation for 5-valued algebra

AND Operation

OR Operation NOT Operation

Naive ATPG Algorithm

 Worst-case computational complexity is exponential.

 All possible input patterns may have to be tried
before a vector is found or that the fault is declared
as undetectable.

 Intelligence mechanism can be used to reduce the
search space.

ATPG Algorithm

 ATPG may make a wrong decision for specific logic
value on PI.

 In this case, the decision should be altered (opposite
logic value) on PI.

 The process of making decisions and and reversing
decisions results in a decision tree.

 Each node in the decision tree represents a decision
variable.

 If only two choices are possible for each decision
variable, decision tree is a binary tree.

Decision Tree

 Example of decision tree.

 At each decision, the search space is halved.

 If a test vector exists, there must be a path along the
decision tree that leads to the test vector.

Backtracking

 Whenever a conflict is detected, the search must
return to some earlier point in decision process.

 The reversal of decision is called a backtrack.

 The easiest mechanism to keep track of decisions is
to reverse the most recent decision made.

 When reversing any decision, the signal values
implied by the assignment of the previous decision
variables must be undone.

Basic ATPG Algorithm

 Given a target fault g/v in a fanout-free
combinational circuit C, procedure to generate a
vector for the fault (Algorithm 2).

 Functions JustifyFanoutFree() and
PropagateFanoutFree() are recursive functions.

Basic ATPG Algorithm

 JustifyFanoutFree(g,v) recursively justifies
predecessor signal of g until all signals that should be
justified are justified from the PI.

Justify Function

 Example circuit C, justify g=1

Input vector abcd = 1X0X justifies g=1

Justify Function

 Example circuit C, justify g=1

Input vector abc = 1X0 justifies g=1

Justify Function

 In fanout-free circuit, JustifyFanoutFree() routine will
always be able to set g to the desired value v and no
conflict wil occur.

 This is no true for circuits with fanout branches -> two
or more signals tracing back to the same fanout stem
are correlated.

 For example, justifying d=1 is impossible (conflict on a)

Justify Function

 Example circuit C, justify z=0

 Due to fanout structure, choices for decisions are
limited.

Propagate Function

 Once the fault is excited, the next step is to propagate
the fault-effect to PO.

 PropagateFanoutFree() is also a recursive function.

 The fault-effect is propagated one gate at a time until
it reaches PO.

 Example: propagate D at g to PO z.

Input vector abc = 100 justifies g=1

Propagate Function Algorithm

Justify Function, Decisions

 Example circuit C, fault g/1.

 For justification g=0, either a = 0 or f = 0 can be
selected.

 ATPG should make a decision.

 Testability measures can be used as a guide to make
good decisions (a = 0 should be better than f = 0)

D Algorithm (Roth)

 The first complete ATPG algorithm -> if the fault is
detectable, D algorithm will find a test vector.

 D or D‘ of the target fault is propagated to PO.

 D-frontier: all gates whose output value is x and fault-
effect is at one or more of its inputs.

 Example of D-frontier with one gate:

D Algorithm (Roth)

 If the D-frontier is empty, the fault can no longer be
detected.

 Example of D-frontier with two gates:

J-Frontier

 J-frontier: all gates whose output values are known
(any value in 5-valued logic) but they are not yet
justified by its inputs.

 Example of J-frontier:

D Algorithm, Example

 Propagation routine will set all side inputs of the path
a-> b-> c to propagate the signal D to PO.

 These side input gates x , y, z, form the J-frontier as
they are not yet justified.

D Algorithm, Pseudo-Code

 The overall procedure for the D algorithm is:

D Algorithm, D-Alg-Recursion

D Algorithm, Detecting Conflicts

 If there any conflicts, they should be detected asap.

 Example: justifying a = 1 and b = 0 is not possible.

 Detecting such conflicts helps to avoid future
backtracks.

D Algorithm, Examples

 Consider faults f/0 and f/1 in the sample circuit.

D Algorithm, Examples

 Consider fault g/1 in the sample circuit.

PODEM

 In D algorithm, decisions can be made at every node

 However, the final result of every test generation step
is the test vector – signals at PI.

 Number of Pis is generally much fewer than number
of nodes in the circuits -> decisions are restricted only
to Pis.

PODEM – Pseudo Code

 The overall procedure for the PODEM algorith is:

PODEM – PODEM-Recursion

PODEM – getObjective

PODEM – Backtrace

PODEM – Example

 Consider fault f/0:

Test vector 1X0

PODEM – Example

 Consider fault b/0:

Fault b/0 is undetectable.

PODEM – Example

 Consider fault g/1:

Fault g/1 is undetectable.

FAN

 PODEM can still make an excessive number of
decisions.

 FAN (Fanout-Oriented TG) algorithm improves
PODEM by reducing the number of decision points.

 FAN identifies headlines in the circuit, which are the
output signals of fanout-free regions -> any value
assignment on the headline can always be justified by
its fanin cone.

 Backtrace function stops at PI (as in PODEM) or at
headlines, thus reducing the number of decision
points.

FAN - Example

 Consider objective z = 1.

 PODEM: a=1, c=1, d=1, e=1, f=1

 FAN: x=1, y=1

FAN – Multiple Objectives

 FAN considers simultaneously multiple objectives.

 Justify k=0
 Selecting b=0 causes a conflict later with objective m=1

Logic Implications

 Logic implications capture the effect of assigning logic
values on other gates in order to make better
decisions.

 Example:

 They can be divided into
 Static logic implications

 Dynamic logic implications

Static Logic Implications

 Direct implications

 Example, implication of logic value f = 1.

Static Logic Implications

 Indirect implications

 Can be computed by performing logic simulation on
the current set of logic implications.

 Example, implication of logic value f = 1.

Static Logic Implications

 Extended backward implications

 Can be computed by performing logic simulation on
the current set of logic implications.

 Example, implication of logic value f = 1.

Dynamic Logic Implications

 Static logic implications are computed once for the
entire circuit, dynamic implications are performed
during the ATPG process.

 Example, implication of logic value for z = 0 by c = 1.

 d=0 -> {a=0, b=0} e=0 -> {b=0}

 Dynamic implication for z = 0 by c = 1 -> {b=0}

Dynamic Logic Implications

 Dynamic logic implications can be used also for
signals with fault-effect.

 Example, fault signal is on node b. In order to
propagate fault signal to PO z, necessary condition is
f=1.

Test Generation for Sequential Circuits

 One test vector may be insufficient to detect the
target fault since the exication and propagation
conditions may necessitate some of the flip-flop
values.

 General model of sequential circuit:

Time Frame Expansion

 Method for transforming sequential circuit into
combintional circuit over several time frames
(iterative logic array).

 Target fault is present in every time frame.

5-Valued Algebra is Insufficient

 Consider the target fault b/0.

 Values a=1/0 or a=1/1 propagates the fault signal
over the AND gate.

 This can be written as a=1/X.

5-Valued Algebra is Insufficient

 Consider the target fault b/1.

 Values a=1/1 or a=0/1 propagates the fault signal
over the AND gate.

 This can be written as a=X/1.

 Additional values are therefore: 1/X, 0/X, X/1, X/0, all
together 9 values (9-Valued Algebra)

Gated Clocks

 Gated clocks are used for power saving.

 Tranformation are used to ease ATPG process.

Multiple Clocks

 Multiple clocks benefit performance and power as
circuit blocks are partitioned to different clock
domains.

 Example of transformation:

Other issues in Deterministic TPG

 Untestable fault identification

 Multiple-line conflict analysis

 Genetic algorithms

 Testing for bridging and delay faults

 Testing of acyclic sequential circuits

 Using testing for logic and power optimization

