

1. Vaja: kombinacijska vezja

Ponovi: osnove jezika VHDL, opis vezij na nivoju pretoka podatkov v jeziku VHDL: vhdl pretok

Dvojiški zapis pozitivnih in negativnih števil. Kakšen je obseg 4-bitnih števil: 0111 predstavlja desetiško _____, 1000 predstavlja vrednost _____, 1111 predstavlja _____

Kombinacijski seštevalnik in primerjalnik

Naredi opis 4-bitnega seštevalnika in primerjalnika celoštevilskih vrednosti. Signali a, b in s naj bodo deklarirani s podatkovmnim tipom **signed** (3 **downto** 0). Na izhodu vezja naj bodo poleg vsote (s) tudi enobitni izhodi:

- zero, ki se postavi na '1', kadar je vsota enaka 0
- nega, ki se postavi na '1', kadar je vsota manjša od 0
- less, ki se postavi na '1', kadar je a < b

Vsoto vektorjev tipa **signed** opišemo z operatorjem seštevanja, primerjave pa s pogojnim prireditvenim stavkom **when ... else**. Za začetek opisa vezja v jeziku VHDL si pomagaj s spletnim orodjem: <u>http://lniv.fe.uni-lj.si/grafTB.htm</u>

Grafični Test Bench

Circuit type: 🔲 Sequential circuit

Name	In/Out	Туре	MSB	LSB
а	in 🔻	signed 👻	3	0
b	in 🔻	signed 🔻	3	0
s	out 👻	signed 🔹	3	0
zero	out 🔻	std_logic 🔹		0
nega	out 🝷	std_logic 🔹		0
less	out 🔻	std_logic		0

V tabeli določi vse vhode in izhode vezja, odstrani kljukico pri **Sequential circuit** (ker imamo kombinacijsko vezje) in določi ime entitete (npr. Kombi). Ob kliku na gumb **Update** se pojavi grafični prikaz signalov, ob kliku na **Generate Entity** pa dobimo prvi opis vezja v jeziku VHDL. Prevajanje in simulacijo bomo izvedli v orodju ModelSim:

- Pripravi mapo v kateri bodo datoteke projekta
- V programu ModelSim ustvari nov projekt: Jumpstart, Create Project ali File > New > Project
- Naredi novo datoteko Create New File, jo odpri File > Open in prekopiraj

prvi opis vezja s spletne stranio, nato pa dopolni VHDL kodo

 Prevedi datoteko s klikom na ikono Compile in popravi morebitne napake

ModelSim ALTERA STA	ARTER EDITION 10.4	4b 💼 👘 🔤	8
File Edit View Com	pile Simulate Ad	dd Library Tools Layout Bookmarks Window Help	
🛛 🖻 • 🚘 🗑 🦈 🍈 I	<u>∦ № © ⊇ ⊇</u>	2 📀 - 🏘 🖺 🙀 😓 🖓 🕮 🖓 🕅	
Library		🔟 📝 D:/modulB/kombi/kombi.vhd (/kombi) - Default 👬 🛃	X
* Name	Type Pat *	• Ln#	
- M work	Library D:/m	1 library IEEE;	*
E kombi	Entity D: ln	2 use IEEE.std_logic_1164.all;	
220model	Li Simulate	IEEE.numeric_std.all;	Е
220model_ver	Li Simulate with	h Coverage	
🕢 🏦 altera	LI Edit	ort (a, b : in signed(3 downto 0):	
altera_Insim	Li Refresh	<pre>s : out signed(3 downto 0);</pre>	
+-It altera insim ver	Recomple	zero, nega, less: out std_logic	
Library × 🖽 Project	Update	kombi;	Ŧ

- Startaj simulacijo Simulate in izberi opis vezja iz work
- Dodaj signale v okno za opazovanje Add > to Wave
- Klikni z desnim gumbom na vhodne signale in nastavi vrednost **Force**
- Zaženi simulacijo F9 in opazuj rezultate

- a. Naredi opis seštevalnika z uporabo notranjega signala. Ugotovi, zakaj ne moremo vsote prirediti kar izhodnemu signal, ki je deklariran kot **out.**
- b. Preizkusi delovanje vezja z negativnimi števili v dvojiškem komplementu. Vsem večbitnim signalom nastavi decimalen prikaz (**Radix > Decimal**). Negativno desetiško vrednost določimo v programun ModelSim v obliki -10#vrednost. Preizkusi različne kombinacije vhodnih vrednosti, tako se da bodo vsi izhodi spreminjali. V praktičnih vezjih ne moremo preizkusiti vseh možnoh vrednosti, za se omejimo na nekaj tipičnih in mejnih primerov.
- c. Uporabi spletno orodje za izdelavo simulacijske testne strukture. Nastavi vrednosti vhodoma a in b in klikni na gumb Generate Test Bench. Vsebino kopiraj v novo datoteko v programu ModelSim (npr. TestKomb), ki jo uporabi za izvedbo simulacije.

- d. Popravi opis seštevalnika, tako da bo izračunal 5-bitno vsoto, pri kateri ne bo prišlo do preliva.
- Razmisli, ali za izhod nega potrebuješ stavek when...else s primerjalnim operatorjem ali bi ga lahko opisal enostavneje.
 Razmieli, kako bi z operacijo odčtovanja paredil primerjavo a < b l

Razmisli, kako bi z operacijo odštevanja naredil primerjavo a < b !

Vaja: Maksimum

Naredi vezje za funkcijo maksimum s tremi 4-bitnimi vhodi. Na 4-bitnem izhodu naj bo vedno maksimalna izmed vseh vhodnih vrednosti, ki so predstavljene kot nepredznačena števila.

a. Najmanj koliko primerjav potrebuješ, da najdeš največjo vrednost?

Število primerjalnih operatorjev v opisu vpliva na velikost vezja, zato je dobro razmisliti kako s čim manj operatorji opisati vezje.