
MCPU - A Minimal 8Bit CPU in a 32 Macrocell CPLD.

Tim Böscke, cpldcpu@opencores.org

02/2001 - Revised 10/2004

This documents describes a successful attempt to fit a simple VHDL - CPU into a 32 macrocell CPLD.
The CPU has been simulated and synthesized for the Lattice ispMach M4A-32 (ispLever) and the Xilinx
9536 (WebPack). Interestingly, Quartus II was not able to fit the design for the 32 macrocell variants
of the Altera MAX3000/MAX7000 series.

All macrocell counts in this document refer to the M4A-32.

The CPU entity description (basically an interface to asynchronous sram):

entity CPU8BIT2 is
port (
data: inout std_logic_vector(7 downto 0);
adress: out std_logic_vector(5 downto 0);
oe: out std_logic;
we: out std_logic;
rst: in std_logic;
clk: in std_logic);

end;

1 Programming model

1.1 Registers and memory

The CPU is accumulator based and supports a bare minimum of registers. The accumulator has a width
of eight bits and is complemented by a carry flag. The program counter (PC) has a width of six bits
which allows addressing of 64 eight bit words of memory. The memory is shared between program code
and data.

1.2 Instruction Set

Each instruction is one word wide. A single instruction format is used. It is encoded with a two bit
opcode and a six bix adress/immediate field.

Mnemonic Opcode Description
NOR 00AAAAAA Accu = Accu NOR mem[AAAAAA]
ADD 01AAAAAA Accu = Accu + mem[AAAAAA], update carry
STA 10AAAAAA mem[AAAAAA] = Accu
JCC 11DDDDDD Set PC to DDDDDD when carry = 0, clear carry

Table 1: Instruction set listing.

The four encodable instructions are listed in table 1. The choice of instructions was inspired by another
minimal CPU design, the MPROZ1. However, instead of being used in a memory-memory architecture,

1ftp://mistress.informatik.unibw-muenchen.de/pub/mproz/

1

like the MPROZ, the instructions are used in the context of an accu based architecture. This made the
additional STA instruction mandatory. The benefits are a better code density (Instructions are just one
word instead of two) and an even simpler cpu architecture.

One interesting aspect is the branch instruction JCC. Branches are always conditional. However, the
JCC instruction clears the carry, so that succeeding branches are always taken. This allows efficient
unconditional, or two way branches.

Macro Assembler Code Description
CLR NOR allone Clear Accu (allone contains 0xFF)
LDA mem NOR allone,ADD mem Load mem into Accu
NOT NOR zero Invert content of Accu (zero contains 0x00)
JMP dst JCC dst, JCC dst Unconditional jump to dst
JCS dst JCC *+2, JCC dst Jump if carry set
SUB mem NOR zero, ADD mem, ADD one Subtract mem from Accu (one contains 0x01)

Table 2: Examples for macros to implement common instructions.

Some examples of macros to implement instructions known from other CPUs are given in table 2. The
listing below shows one of the programs tested on the CPU. It uses Dijkstras algorithm to calculate the
greatest common divisor of two numbers.

Listing 1: GCD example
s t a r t :

NOR a l l o n e ;Akku = 0
NOR b
ADD one ;Akku = − b

5

ADD a ;Akku = a − b
; Carry s e t when akku >= 0

JCC neg

10 STA a

ADD a l l o n e
JCC end ;A=0 ? −> end , r e s u l t in b

15 JCC s t a r t
neg :

NOR zero
ADD one ;Akku = −Akku

20 STA b
JCC s t a r t ; Carry was not a l t e r e d

end :
JCC end

2

2 Architecture

2.1 Datapath

One design goal was to minimize the amount of macrocells used purely for combinational logic, to max-
imize the amount of usable registers. Due to this, structures like multiplexers between registers and the
adress/data output had to be avoided at all costs. One consequence was to divide the datapath into one
path for the address and one for the data.

In contrast to other small cpus the adress generation is not done by the main ALU, therefore a distinct
incrementer was required for the PC. Fortunately, the PC incrementer does still fit into the macrocells
holding the PC register, allowing the full ’address - datapath’ to fit into 12 macrocells.

The ’data - datapath’ occupies 14 macrocells. (Eight for the accumulator, one for the carry flag and five
combinational macrocells for carry propagation).

PC

C

AdressDataOut

[5:0][7:0][7:0]

[7:0]

[5:0]

[5:0]

[5:0]

DataIn

ALU Mux

AdregAkku

+1

Figure 1: Datapath of the CPU.

3

2.2 Control

The datapath is controlled by a simple state machine with 5 states. The state encoding was carefully
chosen, to minimize the required amount of macrocells to store and decode the states. Two additional
macrocells are used to generate the OE and WE signals. The total count of macrocells used for the
control amounts to 5.

The state encoding for the state machine is listed in table 3.

Almost all instructions are executed in two clock cycles. The only exception is a taken branch, which is
being executed in a single cycle.

State Function Operations Next
000 S0 Fetch instruction pc ⇐ adreg + 1, adreg = data S0 w. opcode = 11, c = 0

/Operand adress oe ⇐ 0, data ⇐ Z S1 w. opcode = 10
S2 w. opcode = 01
S3 w. opcode = 00
S5 w. opcode = 11, c = 1

001 S1 Write akku to memory we ⇐ 0, data ⇐ akku S0
adreg ⇐ pc

010 S2 Read operand, ADD oe ⇐ 0, data ⇐ z, adreg ⇐ pc S0
akku ⇐ akku + data , update carry

011 S3 Read operand, NOR oe ⇐ 0, data ⇐ z, adreg ⇐ pc S0
akku ⇐ akku NOR data

101 S5 Clear carry, Read PC carry ⇐ 0, adreg ⇐ pc S0

Table 3: The state machine.

3 Sources

A ZIP-Archive containing the VHDL-Sources of the CPU and the testbench can be downloaded at: .

4

http://www.opencores.org/

Listing 2: CPU source
−−
−− Minimal 8 Bit CPU
−−
−− rev 15102001

5 −−
−− 01−02/2001 Tim Boescke
−− 10 /2001 slight changes for proper simulation.
−−
−− t.boescke@tuhh.de

10 −−

library ieee ;
use ieee. std logic 1164 .all ;
use ieee. std logic unsigned .all ;

15

entity CPU8BIT2 is
port (data: inout std logic vector (7 downto 0);

adress: out std logic vector (5 downto 0);
oe: out std logic ;

20 we: out std logic ;
rst : in std logic ;
clk : in std logic);

end;

25 architecture CPU ARCH of CPU8BIT2 is
signal akku: std logic vector (8 downto 0); −− akku(8) is carry !
signal adreg: std logic vector (5 downto 0);
signal pc: std logic vector (5 downto 0);
signal states : std logic vector (2 downto 0);

30 begin
process(clk,rst)
begin

if (rst = ’0’) then
adreg <= (others => ’0’); −− start execution at memory location 0

35 states <= ”000”;
akku <= (others => ’0’);
pc <= (others => ’0’);

elsif rising edge (clk) then

40 −− PC / Adress path
if (states = ”000”) then

pc <= adreg + 1;
adreg <= data(5 downto 0);

else
45 adreg <= pc;

end if;

−− ALU / Data Path
case states is

50 when ”010” => akku <= (”0” & akku(7 downto 0)) + (”0” & data); −− add
when ”011” => akku(7 downto 0) <= akku(7 downto 0) nor data; −− nor
when ”101” => akku(8) <= ’0’; −− branch not taken, clear carry
when others => null; −− instr. fetch, jcc taken (000), sta (001)

end case;
55

−− State machine
if (states /= ”000”) then states <= ”000”; −− fetch next opcode
elsif (data(7 downto 6) = ”11” and akku(8)=’1’) then states <= ”101”;−− branch n. taken

else states <= ”0” & not data(7 downto 6); −− execute instruction
60 end if;

end if;
end process;

−− output
65 adress <= adreg;

data <= ”ZZZZZZZZ” when states /= ”001” else akku(7 downto 0);
oe <= ’1’ when (clk=’1’ or states = ”001” or rst=’0’ or states = ”101”) else ’0’;

−− no memory access during reset and
we <= ’1’ when (clk=’1’ or states /= ”001” or rst=’0’) else ’0’;

70 −− state ”101” (branch not taken)

end CPU ARCH;

5

Listing 3: Verilog version of the CPU, unverified.
//
// Minimal 8 Bit CPU

3 //
// 01−02/2001 Tim Boescke
// 10 /2001 changed to synch. reset
// 10 /2004 Verilog version , unverified !
//

8 // t .boescke@tuhh.de
//

module vCpu3(data,adress,oe,we,rst,clk);

13 inout [7:0] data;
output [5:0] adress;
output oe;
output we;
input rst ;

18 input clk ;

reg [8:0] accumulator; // accumulator(8) is carry !
reg [5:0] adreg;
reg [5:0] pc;

23 reg [2:0] states ;

always @(posedge clk)
if (˜rst) begin

adreg <= 0;
28 states <= 0;

accumulator <= 0;
end
else begin

// PC / Address path
33 if (˜| states) begin

pc <= adreg + 1;
adreg <= pc;

end
else adreg <= pc;

38

// ALU / Data Path
case(states)

3’b010 : accumulator <= {1’b0, accumulator[7:0]} + {1’b0, data}; // add
3’b011 : accumulator[7:0] <= ˜(accumulator[7:0]|data); // nor

43 3’b101 : accumulator[8] <= 1’b0; // branch not taken, clear carry
endcase // default : instruction fetch , jcc taken

// State machine
if (| states) states <= 0;

48 else begin
if (&data[7:6] && accumulator[8]) states <= 3’b101;
else states <= {1’b0, ˜data[7:6]};

end
end

53 // output
assign adress = adreg;
assign data = states!=3’b001 ? accumulator[7:0] : 8’bZZZZZZZZ;
assign oe = clk | ˜rst | (states==3’b001) ;
assign we = clk | ˜rst | (states!=3’b001) ;

58

endmodule

6

	Programming model
	Registers and memory
	Instruction Set

	Architecture
	Datapath
	Control

	Sources

